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Introduction. The method of correlation equations is one of the most
demanded means of constructing and studying systems of mathematical
statistical physics in infinite volumes (see, for example, [2, 6, 7, 9, 10]). In the
case of lattice systems, this method has generally been applied to vacuum
systems with two states: spin and vacuum.

The problem of extending the applied method of correlation equations for
more general systems naturally arises. This problem was considered in [8], in
which a measurable set of finite measure was considered as a spin space, and
the vacuum measure was taken to be equal to unity. In all mentioned papers, the
definition of correlation function is based on the notion of interaction potential.

In the present work, we consider systems with finite spin space. Based on
the results of [1, 3-5], a system of correlation equations is written using the
concept of the transition energy field introduced in [1]. It is shown that for a
sufficiently small value of the one-point transition energies, the corresponding
system of correlation functions, considered in infinite space, has a solution
which is unique.

1. Preliminaries. Let Z¢ be a d-dimensional integer lattice, i.e., a set of d-
dimensional vectors with integer components, d > 1. Note that all the arguments
in this paper remain valid if we consider an arbitrary countable set instead of
A

For S c Z4, denote by W(S) = {A c S,|A] < oo} the set of all finite
subsets of S, where |A| is the number of points in A. In the case § = Z¢, we will
use the simpler notation W. To denote the complement of the set S, we will
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write S°. For one-point sets {t}, t € Z¢, braces will be omitted. For t =
(tW, @ @) 5= (s s@ | sD)ezd we denote |[t—s|=
max1sisd|t(i) - S(i)|-

Let each point t € Z¢ be associated with a set X¢, which is a copy of some
finite set X, 1 < |X| < . Denote by X5 the set of all configurations on S,
S c 7%, that is, the set X5 = {x = (x;,t € S), x, € X} of all functions defined
on S and tacking values in X. For § = @, we assume that X? = {@} where @ is
an empty configuration. For any disjoint S,T c Z¢ and any x € X5, y € X7,
denote by xy the concatenation of x and vy, that is, the configuration on SUT
equal toxonSandtoy onT. When T c S, we denote by x the restriction of
configuration x € XS on T, i.e., xy = (x.,t €T).

Let 6, be some fixed element of X* (vacuum) and 8 = {6,,t € Z}. Denote
XE=Xt\6,, t € Z% For any S c Z%, denote by X5 the set of configurations
on S which components do not contain the vacuum, and let L3 = U e (s) X! be
the set of configurations without vacuum which supports are subsets of S. In the
case S = Z¢, we denote L, = L%, Note that any configuration from X5 can be
written as x6g,; where x € X, 1S, It is not difficult to see that X5 =
Uses{xsy;, x € X1}

Finally, for any S c Z¢ and any function h:W(S) » R, the notation
lim,,,a h(A) = a means that for any & > 0, there exists A, € W(S) such that
forany A € W(S), A D A, it holds |h(A) — a| < e.

2. Transition energy fields. In [1], the notions of transition energy field
and one-point transition energy field were introduced.

Aset A = {A%, % € X2, A € W} of functions A% (x, u), x,u € X2, is called
transition energy field if its elements satisfy the following consistency
conditions: for all A € W and ¥ € X°, it holds

AX(x,u) = AX(x,z) + AS(z,u), =x,uz€XD;
and for all disjoint A,V € W and & € X (AV")°,
AX oy Gy, uv) = A7 (x,u) + A5 (y,v),  x,u€ X yveXx
Note that in particular, it holds
A% (x,u) = =A% (u, x), X(x,x) =0, x,u€Xx’

Aset A, = {AF, % € Xt°,t € 74} of functions AF (x,u), x,u € X*, is called
one-point transition energy field if its elements satisfy the following
consistency conditions: for all t € Z4 and % € X*°, it holds

Af(X.U) = Af(X,Z)+Af(Z]u)] X,U,Z € Xt;
and for all t, s € Z% and x € x{ts¥°,
AP (x,u) + AT (y,v) = AP (y,v) + AP (x,u), x,u €X'y, vEXS.
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The following theorem states the relationship between the elements of a
transition energy field and a one-point transition energy field (see [1] as well as
[4]).

Theorem 1. A set A4 ={A%, % € XA°, A € W} of functions X4 x X4 is a
transition energy field if and only if its elements can be represented in the form
A,’f(x, u) :Aflx/l\t1(xt]ut1)+A::t1x/l\{t1,t2}(xt2|ut2)+ "'+Af:mm(xtnnutn)n

x,u € X4, where A ={t;,t,, ..., t,} is some enumeration of points in 4,
|Al = n, and 4, = {4F, % € X*°,t € Z¢} is a one-point transition energy field.

Thus, the one-point transition energy field 4, uniquely determines the
transition energy field A. Therefore, when obtaining results, conditions can only
be imposed on 4;.

3. Correlation functions. Let 4, = {4F,x € X**,t € Z%} be a one-point
transition energy field and let 4 = {4%, ¥ € X4°, A € W} be the corresponding
transition energy field. Let us fix some A € W. To simplify notations, we

denote 4, = Ai"c, and foranyt e Aand z € XM\ we will write A% instead of

z0 ¢
a7,

Finite-volume correlation function relative to A is a function p, on L,
defined by

1
palx) = 7 Z edaGy60) - xe X! c A,
AyEXA\I

ZA et Z eA/l(xveA)l

xex4

pa(@)=1,and p,(x) =0ifx € X and I ¢ A.

Thus, each 4, defines a set of finite-volume correlation functions {p,, 4 €
W}. Under a suitable condition on the elements of 44, it can be shown that each
finite-volume correlation function satisfies a certain equation.

Theorem 2. Let A, = {Af,x € X*",t € Z¢} be a one-point transition
energy field such that forany t € A € W and x,u € Xt,y,z € X\, ¥ € X4, it
holds

where

47 (x,0,) — A% (x,0,) = 47 (x,6,) — 4%(x,6,).
1)
Then for any A € W, correlation function p, satisfies the following
equation: foranyt € I ¢ A € W and x € X%, u € X", it holds

o A% (x.0)

paCen) = gy | Pal) + Z e48(@09 (G, (xu) — G4(aw)) |
aext '

aext

where



Gaa) = Y Y Koy Gn) | palwy) + ) palawy)
JISTAVS yEX*] aext
and
Koy (ey) = n(ea’;u(ys,es)—m;(ys,es) _1),
sej
Sketch of the proof. Lettel c A€ W and x € X!, u € xN
any y € XA\,

Ap(xuy, 6,) = Altl(xl 0p) + Ap(Biuy, 6,) + Altly (x,6) — Altl(x. 6,),

. Since for

We can write
1
pA(xu) = — Z eAA(xuyveA)
ZA yEXA\I
oAt (x6))
— e44(6tuy.0,4)
Zy
yEXA\I
+ o446y 6,) (eA’;y(x,et)—Ay(x,et) _ 1) .
yEXA\I

For the first summand in the obtained relation, we have

1
7 2 e44(0ruy 62) = pa(u) — 2 pa(au).
A

yexAN aext
Let us consider the second summand

Galow) = 1 Z e24(6tuy 6,4) (eA’;y(x,et)—Ay(x,et) _ 1)
ZA yEXA\I

_1 8a(wyBrang)04) (oA (2.0 -AE(x6) _
7 e e 1).
4 RN yex)

Using properties of 4 and condition (1), we can write

Al;y (xl et) - Alt{' (xl leti)
J

XUYs. Vs, UYg. Vs
=Z<A5j e (ysj'esj)_ASj e (ysj'esf))

=1
I

- (Aesc}'l (J’Sj' 95}') — 45 (ysf‘ 951'))'

j=1
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where J = {sy,s3, ..., 5|} is some enumeration of points in J. Applying
standard method (see, for example, [2, 7, 9, 10]), we obtain the expression for
G (xu) given in the statement of the theorem, which leads to equation

palaw) = &0 | p,(u) — Z palaw) + G () |.
aext
It remains to take the sum of the obtained relation over all x € X! to get the
expression for ¥, x¢ pa (au) (see [8]).
O
4. Equations for correlation functions. Let 4, = {A¥,% € X*",t € 7¢} be
a one-point transition energy field. We introduce the norm for 4, as follows:
l14,1] = sup sup Z sup |4%(y, 0;) — As(y, 65)].
tezd xeXt L=t yexs
Put also
D =sup sup sup |4%(x,u)|.
tezZd x uext zext
We assume that Z¢ is endowed with some order <, for example, the
lexicographical order. For each I € W, denote I’ = I\t where t is the smallest
element in | with respect to <. For the sake of simplicity, for any x € X!, we
will use the notation x' = x;,.

Consider the Banach space B, of bounded functions ¢ on L, with the norm
loll = supliglla,  llglla= Y. lp@I
AEW

xex?

Consider the operator X = K (4,) on B, defined as follows:
(K P)(x) =y (Sp)(x) + (Te)(x)), xe€XLIeW,

where
_ efixe _ (oG, =1,
Y(x) - 1 + Zaexf eAg(avet)l (S(P)(x) - { 0, III — 1;
and
(Te)(x) = Z e4t(@9) ((G)(x) — (Gp)(ax"))
aext
with
G@= Y D Kuyln)| oGy + Y plaxy)
Jew(I°€) yEX*] aext

and K;; (xy) defined as in Theorem 2.
Further, we put

sy = O =1

1
0, > 1 x€eX., IeW,
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and
eP Ny

Ci =7——F—,
L7 1+ e DNy

C, = 4eP Ny(exp{el4ill —1} —1), Ny =|X]-1.
Using standard approach (see, for example, [7]), we obtain the following
result.
Theorem 3. Let one-point transition energy field 4, be such that

c,(1+¢,) <1 (2)

Then the equation

p=6+XKp 3)
has a unique solution on B, given by p = § + Y7, X ™8.
Now, for any A € W, consider the operator K, = oK, where

(¢A¢)(x) = {(p(x), x € L{k\l

0, otherwise.

According to Theorem 2, for each A € W, the corresponding element p, of
{p, A € W} satisfies the equation
pa =64+ XKppa 4
where &, = 8. Since || K|l < ||%]|, under conditions of Theorem 3 we
have ||K,ll <1, and hence, p, is the unique solution to (4), which can be
written as py = 84 + Y1 K164

The following theorem is the main result of the paper.

Theorem 4. Let 4, be a one-point transition energy field whose elements
satisfy (1) and (2). Suppose also that there exists R > 0 such that for any
t € 7%,

AF(ew) =477 (x,u), xu€Xixe Xt
()

where dt = {s € t°: |t —s| < R}. Let {p,,A € W} be the set of finite-

volume correlation functions corresponding to 4,. Then for any I € W,

H — I
/IllTrZr]ipA(x) - p(x)l X € X*l

where p is the solution of equation (3).

Remark. Let & be a pair interaction potential. Then the set 4, =
(4%, % € X*°, t € 74} of functions

AF(x,u) = Z (Dps(uits) — Pps(x%5)),  x,u € XE,

SEtC
forms a one-point transition energy field corresponding to the potential &.

It is not difficult to see that the elements of 4, satisfy (1).
In particular, if @ is a vacuum potential with the norm
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@]l = sup sup ) sup|®(xy)l,
teZ® xex!t SCTCYEX:
then
4.1l < llell, D <2|el,
and condition (5) is satisfied if & is the finite-range potential. Thus,
Theorem 4 holds true if
e2lelly,

m(l + 4e2I°l Ny (expfell®ll — 1} — 1)) <1
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22 2UU prpwlhg winud A.U. Lwhuybtwnjul, L. U.vusunpjuh
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wnwowplyby k §nnkjjughntt hwjwuwpnidubph punhwiunip hwdwlwnp-
qp: 8nyg k wpdws, np dkjjinnwiing wagnidwyhtt Eukpghwyh pudujw-
Uhtt thnpp wpdbpbkph hwdwp wyju hwdwlupgp phunwpldws wiuwh-
dwl mwpwoénmipjub Uk, niskih kb nith vhwly (nusnud:
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Ynen-koppecnonaenT HAH PA Bb.C. Haxanersin, JI.A. XauaTpsan

IToJie 3Hepruii nepexona u KoOppeasiiUOHHbIC YPABHEHUS

Ha ocHoBe moHsTHS N0 SPHEPTUH TIepexo/ia MOoNydeHa CHcTeMa Koppens-
LMOHHBIX YpaBHEHUH A pElIeTdaThIX CHCTEM C KOHEYHBIM IMPOCTPaHCTBOM
cnuHoB. [loka3aHo, 4TO TpH AOCTaTOYHO MaJOM 3HAYEHHH OJHOTOYEUHBIX
9HEPruil Tepexoja COOTBETCTBYIOMIAS CHCTEMa KOPPESIHMOHHBIX (YHKIWH,
paccMaTpuBaeMasi B OECKOHEUHOM MPOCTPAHCTBE, WMEET pEIICHUE, MPHYEM
€IMHCTBEHHOE.
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