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Introduction. The paper presents a comparative study of bandgap forma-
tion mechanisms in infinite homogeneous multi span beam in tension rested on
periodically arranged exterior intermediate rigid and elastic supports. The
effects in beams caused by frequency bandgaps where flexural waves are
forbidden to propagate when the frequencies are in the bandgap (or the
stopband) are widely used in vibration energy harvesting devises consisting of
meta beams with attached or covered by piezoelectric patches [1-4]. Flexural
frequency multiple bandgaps in metamaterial beams can be generated in many
ways. Bandgap formation due to Bragg’s scattering in periodic beam consisting
of two or more kinds of materials are discussed in [5, 6]. Bandgaps in beams
with periodic local resonators or rested on periodic foundation are considered in
[7-9]. In [10-12] it is shown that periodic exterior supports, interior hinges can
open wide bandgaps in homogeneous beams. Effects caused by bandgaps in the
piezoelectric periodic meta beams are investigated in [13].

Governing equations and solutions. This section presents the basic
dynamics equations, interface relations and solutions of an Euler meta beam
tensioned by an axial force and rested on periodically arranged intermediate
rigid and elastically constraint supports. Two configurations of a meta beam are
considered:

1) beam with elastically constraint supports distanced by d length (ES),

2) beam with elastically constraint supports and rigid supports when the

distance between rigid supports and nearby elastically constraint
supports is equal to d (ERS).
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These configurations are graphically presented on Fig. 1, 2 in
dimensionless coordinate systemx =z/d .
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Fig. 1. Basic repeated unit span of a tensioned beam with periodically arranged elastic
supports (ES).
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Fig. 2. Basic repeated unit span of a tensioned beam with periodically arranged rigid
and elastic supports (ERS).

Transverse vibration of the Euler beam is given by the following equation

o'w oW o'W
EI - + 04 =
P
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where W (Z, t ) is the defection of beam, EI, 0, A denote the flexural rigidity,

the mass density per unit volume and the cross-sectional area, respectively,
Q> 0is the axial tension force. Notice that the force () can also be negative
(compression) as long as the beam is stable.

Assuming W (z,t) in the form

W(zt)=U(z)exp(iar) Q)

where @ is the circular frequency, U (x) is the amplitude function and intro-

ducing the dimensionless coordinate x=2z/d , solutions for amplitude
functions can be written as

U, (x)= A, sin(px) + A, sinh(gx) + 4, cos(px) + A., cosh(gx)
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Here Q and F are dimensionless parameters of frequency and force.

In (3) superscripts (i) denote regions:
in beam of ES configuration (-)—xe(n-1,n-1/2),(+)>xe€(n-12,n),
in beam of ERS configuration (-) »xe (n—1,n),(+) > x€(n,n+1).

Beam with periodically arranged exterior elastic supports (ES).
Consider the beam with the periodically arranged exterior elastic supports
located at points x =7 —1/2 of the basic unit span x € (n -1, n) (Fig. 1).

Contact conditions at points x =7 —1/2 can be cast as

dU,(x) _dU_(x)

. U.®=U_(x)=0

dx dx (4)
d’U, (x) 3 d’U_(x) _ v dU_(x)
dx* dx* dx

Here ¥ =Tt d/ EI is the dimensionless parameter, 7' is the stiffness of the
rotational spring attached to an elastic support.

At the end points of the periodic basic unit span the Floquet conditions will
be used [6]

d3U+(n)_/1d3U_(n—1) d2U+(n)_/1d2U_(n—1)

a dx’ Todx dx’ (5)
dU+(n) =,1dU—(n_1),U+(n)=/1U_(n—1)

dx dx

Here A =exp(ikd), k is the Floquet wave number.

Applying to the solutions (3) the contact (4) and the Floquet conditions (5)
we get the equation determining the Floquet wave number

A+2A)f(p.q)+4g(p.q)=0
cos(kd) =n(Q)

__g(p.q) (6)
7(8)= 2/(p.q)

Here

[ (p.q)=(p*+47)(gsin(p) - psinh(q));
2(p.4)=7(2pg(1-cos(p)cosh(q)) - (p* - ¢* )sin(p)sinh(q)) +
+2 ( p+q’ ) (gsin(p)cosh(q) — pcos(p)sinh(q))

The condition|77(£2)|>1, where values of & are complex, defines the
bandgaps of frequencies ranges of eigenfrequencies, in which flexural waves
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cannot propagate in the infinite periodic beam with periodically repeated elastic
supports. The stopband edges of eigenfrequencies are given by condition

7 (Q)|=1[6].
In the case of the action of a compressed force ' =—P we can obtain the
beam stability equation from (6 ) at Q-0
cos(kd) =n(P)
( ) }/(x/ﬁsin(x/?)+2cos(\/ﬁ)—2)—2x/ﬁsin(\/ﬁ)+2Pcos(x/ﬁ) (7
n(pP)= ;
2(P—\/Fsin(ﬁ))

The range of P, where ‘U(P)‘>l (values of k are complex),

corresponds to the beam stability region. The range of P, where ‘U(P)‘ <1
(values of k are real), corresponds to the beam instability region [14]. Since

77(0) = _(£+2j the critical values of P will be determined from equation .

n(P)=-1.
y(x/ﬁsin(\/;)+2cos(\/ﬁ)—2)+Z(P—Z\/Fsin(\/;)+Pcos<x/F))=O )

Beam with periodically arranged elastic and rigid exterior supports
(ERS). Consider the beam with elastically constraint supports and rigid
supports. The distance between rigid supports and nearby elastically constraint

supports is equal to d and in the basic unit spanx€ (n—l,n+1) the rigid

supports are located at points x =n—1,x=n+1, the elastic support at point
x=n., (Fig 2).
Contact conditions at points x =#n are as in (3 ), the Floquet conditions
can be cast
dU, (n+1) 4 dU_(n-1) d’U, (n+1) 1 d*U_(n-1)
dx - dx ’ dx’® - ax’
U, (n+1) =0,U_ (n—l) =0

)

Applying to the solutions (3) the contact (4) and the Floquet conditions (9)
we get the equation determining the Floquet wave number

cos(2kd) =n(Q)

(@)=

(10)
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£:(p-q)=4(p" +4")(gsin(p)— psinh(q))*;
. (p2 -4’ ) cosh(2g)cos(2p)— p* cos(2p) +q° cosh(2g) — p* cos(2p)
g.(p.q)==2(p"+4°) o . .
+2¢p (2sin(p)sinh(g) —sin(2 p)sinh(2q))
p (p2 +q ) sin(2p)—gq (p2 +q ) sinh(2q)+¢ (q2 -3p ) cos(2p)sinh(2g)
-p ( p*-3q" ) sin(2p) cosh(2g) + 8 p*q cos(p) sinh(q) — 8 pg” sin(p) cosh(g)

In the case of the action of a compressed force /' =—P we can obtain a
beam stability equation approaching £ — 0 in (10).

cos(2kd) =n(P)
) (}/+1)\/F+4(]/+P)sin(\/F)+(y(P—Z)—4P)sin(2«/;)—4;/x/Fcos(JF)+«/F(3)/+2P—1)COS(2\/F)
2P (VP -sin(VP))

n(pP
(11)

Since 7(0)=7+y, the critical value of P will be determined from
equation 7 (P) =1

(v+2P)sin(\P) - y/P cos (VP) =0

Note that the stability of beams with rigid and elastic supports has been
thoroughly  discussed in [14, 15]. The stability analysis of the multi- span
beams on periodically arranged exterior rigid and elastic supports is carried out
in [16].

Discussion, numerical results. On Fig. 3 the stability curves of the
critical minimal values of compressive axial force P above of which the beam
is unstable are presented for beam ES and ERS configurations versus parameter
¥ defining the stiffness of the rotational spring attached to an elastic support.

The solid curve corresponds to ES beams, and the dashed curve - to ERS beam.

r 5 10 15 20 25 30

Fig. 3. Stability curves of critical minimal values of force P versus stiffness parameter
Y.
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The imaginary parts of the Floquet wave number Im(kd)define the
attenuation of the flexible waves whose frequencies are inside the bandgaps,
while the real part of the Floquet wave number Re(kd) defines the dispersion
of the flexible waves, whose frequencies are outside the bandgaps.

On Figures 4 the attenuation curves Im(kd) versus frequency €2 are
plotted, illustrating the variation of bandgap widths. The lowest contours of the
attenuation curves, where Im(kd)—0 define the maps of bandgap
frequencies.
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Fig. 4. a — Maps of the first bandgap of ES beam in tension; b — maps of the first
bandgap of ERS beam in tension.

On Fig. 4, a, b. the maps of the first bandgap are presented for ES and ERS
beams under tension. The thick solid curve corresponds to beams with
parameters: Y =0,F =0, dashed curve:y=30,F =0, dotted curve:
y=0,F =30, thin solid curve : ¥ =30, F =30

On Fig. 5a the maps of first bandgap are presented for elastically stable ES
beam under action of compressed force F'. The solid curve corresponds to
beam with parameters: Y =0, F =0, dashed curve :y =25,F =25, dotted

curve: ¥ =25, F =-25, respectively (See Fig 3.)

Im(kd)
20 Sl ‘ e .

20 30 40 50 0 ° 20 25 30 35 40 45 50

Fig. 5. a — Maps of the first bandgap of compressed ES beam compressed; b — maps of
the first bandgap of ERS beam.

On Fig. 5b the bandgap maps are presented for elastic stable ESR
beam under action of compressed force F . The solid curve corresponds
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to beam with parameters: y =0, F =0, dashed curve to:y=25F =12,
dotted curve to: y =25,F =-12.

Note that compressive force move the bandgaps to the low frequency
range, while tension force and the stiffness of elastic support to high
frequency range.
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Fig.6. Maps of multiple bandgaps of ES beam , ¥ =30, F =30.

From Fig. 6 one can conclude that the effect of the bandgap widening takes
place also for multiple bandgaps. Moreover, the subsequent bandgaps are much
wider than the previous bandgaps.

As it follows from Fig. 4 — 6 the stiffness of the rotational spring attached
to elastic periodic support, as well as the tensive and compressive axial forces
sufficiently widening and changing locations of the multiple bandgaps.

Conclusions. Based on the Floquet theory it is shown that in a multi-span
beam rested on periodic rigid and elastic supports the tensive and compressive
axial forces sufficiently widening the multiple bandgaps of the flexural waves.
The widening of the bandgaps occurs also with increasing the stiffness of the
rotational spring attached to an elastic support. This study lays a certain
theoretical foundation for the design and tuning the metabeam bandgap
locations and widths by varying the stiffness of the elastic supports as well as
the axial force magnitude and direction.
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Bandgaps, Dynamics and Stability of a Multi-Span Beams Rested
on Periodically Arranged Exterior Supports

In the framework of the Floquet theory formation of flexural frequency bandgaps
is considered for a beam in tension rested on periodically arranged rigid or elastically
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constraint intermediate exterior supports. In the case of an axial compressive force
action the elastic stability of such beams is also discussed.

4. R. Twuqupyui

Upwnwph hkbwpuwubbpht quppipwpwp quuwdnpjus puquupnhsp
htswtbph wpglJwsd gninpitpp, nhtwdhljwi b juyniunipniup

dnykh nbunipyu opowhwlnid phunnwplus tu dqius htiswuh sndwh hwdw-
lumpnitubph wpghpws gnunhubph dtwgnpdwt jubghpbbp: 2EkSwip gpdus kb wyup-
phpwpup quuuwynpduws Ynonn jud wpwdquljut  dhowilju) wpunwpht hthw-
puwuttpht: Lutwpyynd b twl wynuhuh hidwutbtph juyniunipniut wpwugpuh
ubknunn nidh wqpgnmpjub nhwpnud:

K. b. Kazapsn

3anpemémlble 30HbI, JTUHAMUKA U yCTOﬁ‘lHBOCTB MHOTI'OIIPOJETHBIX 0ajIoK
Ha NePUHOANYECCKH PACIOJO0KCHHbIX BHCIIHUX OIMOpax

B pamkax Teopun ®iioke pacCMOTPEHBI 331241 ()OPMUPOBAHUS 3aAIIPEIICHHBIX 30H
M3rHOHBIX 9aCTOT PACTSHYTON OAJKH, MOKOSIIEHCS HAa MEPHOANIECKH PACIIONIOKEHHBIX
KECTKHX WIN YINPYTUX IPOMEXKYTOUHBIX BHEMHHUX omopax. OOcCyxnaercss Takxe
YCTOHYMBOCTD TaKHX OaJOK B CIIydae JEHCTBUS OCEBOW CKMMATOIIEH CHIIBI.
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