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Introduction. It is well-known that the Gibbs formula (which establishes a 

relationship between probability and energy) is the basis of statistical physics. 
Much attention has been paid to the justification of the Gibbs formula using 
physical reasoning. In [1], it was shown that the Gibbs formula can have a 
purely mathematical justification for both finite and infinite systems (for the 
case of finite-volume systems, see also [2]). In our paper, we will show that 
there is a deeper relationship between energy and probability, namely, energy 
and probability are dual concepts.  

Duality in mathematics is the principle according to which any true state-
ment of one theory corresponds to a true statement in the dual theory. Here, we 
will show how this principle can be applied to solve the known problem of 
describing a finite random field by a set of consistent conditional distributions 
(see, for example, [3]). A direct probabilistic solution to this problem is given in 
[2].  

1. Duality of energy and probability in finite volume. Let Λ be a set with 
a finite number of elements, 1 < |Λ| < ∞, and let each point ∈ Λ be asso-
ciated with the set , which is a copy of some finite set . Denote by ={ = , ∈ Λ : ∈ , ∈ Λ} the set of functions (configurations) defined on Λ and tacking values in . For any ⊂ Λ, denote by  the restriction of 
configuration ∈  on . For any , ⊂ Λ such that ∩ = ∅, and any ∈ , ∈ , denote by y the concatenation of  with y, that is, the 
configuration on ∪  equal to  on  and to  on . For one-point sets { }, ∈ Λ, braces will be omitted. 

Probability distribution on  is a function : → [0,1] satisfying the 
following conditions: 
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 > 0, ∈ ,								∑ ∈ = 1.     (1) 
 

Probability distribution  on  sometimes will be called a (finite) random 
field. 

 A function Δ : × → ℝ satisfying 
 Δ , = Δ , + Δ , ,								 , , ∈ ,   (2) 

 
will be called a transition energy. The value Δ ,  of this function can be 
interpreted as an amount of energy needed to change the state of the physical 
system from  to  (in the finite volume Λ).  

The following result establishes a relationship between two fundamental 
concepts: energy and probability. 

Theorem 1. For a set = , ∈  of numbers to be a probability 
distribution on  it is necessary and sufficient that elements of  have the 
Gibbs form 

 

  = { , }∑ { , }∈ ,							 ∈ ,    (3) 

 
where ∈  and Δ = Δ , , , ∈  is a transition energy on ×  with Δ , = ln ,								 , ∈ . 

 
Since Δ  satisfies (2), there is a function = , ∈  such that 
 
  Δ , = − ,								 ∈ .  (4) 

Substituting (4) into (3), we obtain 
 = {− }∑ {− }∈ ,								 ∈ , 

where  can be considered as a Hamiltonian (potential energy) of a physical 
system. Hence, in the case of finite volume Λ, any function  on  can be 
interpreted as a Hamiltonian (see [1]). Particularly, in the classical inter-
pretation, = Φ{ , }, ∈ ,								 ∈ , 
where Φ is a pair interaction potential. 

The relationship between probability distribution and transition energy can 
be formulated in terms of operators. Let = { } be the set of all probability 
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distributions on  and let = {Δ } be the set of all transition energies on × . Consider the operator : →  which maps an element from  to an 
element from  according to the formula 

 , = ln ,								 , ∈ , 
and the operator : →  which maps an element from  to an element 
from  by the formula  Δ = {Δ , }∑ {Δ , }∈ ,								 ∈ ,	
where ∈ . Due to condition (2), the operator  is correctly defined. It is 
clear that both operators  and  depend on Λ, but to simplify the notations, 
sometimes we will not directly specify this dependence.  

The following statement holds true. 
Proposition. Operators  and  are mutually inverse, that is, for all ∈  and Δ ∈ , it holds 
 = ,								 Δ = Δ . 
It is easy to see that for any ∈ , function  satisfies the charac-

teristic property (2) of transition energies, while for any Δ ∈ , function Δ  satisfies (1), which characterizes a probability distribution. Therefore, 
any statement about probability  can be formulated in terms of corresponding 
transition energy Δ , and vise versa.  

2. Duality of transition energy field and conditional distribution. Let  
be a probability distribution on . There is a set = ̅, ̅ ∈ \ , ⊂Λ  of its conditional probabilities 

 ̅ = ̅∑ ̅∈ ,								 ∈ , ̅ ∈ \ , ⊂ Λ. 
It is clear, that for any fixed ⊂ Λ and ̅ ∈ \ , function ̅  is a probability 
distribution on . We will also consider the set = ̅ , ̅ ∈ \ , ∈Λ ⊂  of one-point conditional probabilities generated by . 

Now, let = ̅, ̅ ∈ \ , ⊂ Λ  be a set of probability distributions ̅  
on  parameterized by boundary conditions ̅ ∈ \ , ⊂ Λ. A natural 
question arises: does there exist a probability distribution  on  for which  
is a set of its conditional probabilities, that is, = ? The answer is given 
by the following statement. 

Theorem 2. Let = ̅ , ̅ ∈ \ , ⊂ Λ  be a set of probability 
distributions on  parameterized by boundary conditions ̅ ∈ \ , ⊂ Λ. 
There exists a unique probability distribution  on  such that =  if 
and only if the elements of  satisfy the following consistency conditions: for 
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any disjoint , ⊂ Λ and ̅ ∈ \ ∪ , , ∈ , ∈ , it holds 
 
 ∪̅ ̅ = ∪̅ ̅ .    (5) 

 
Condition (5) is a finite-volume version of the well-known R. Dobrushin’s 

consistency condition, see [4]. The set = ̅ , ̅ ∈ \ , ⊂ Λ  of proba-
bility distributions satisfying (5) is called a finite-volume specification. Theorem 
2 states that any finite-volume specification is a set of conditional probabilities 
of some (uniquely determined) joint distribution. 

Let Δ  be a transition energy on × . Consider the set Δ =Δ ̅ , ̅ ∈ \ , ⊂ Λ  of functions 
 Δ ̅ , = Δ ̅, ̅ ,								 , ∈ , ̅ ∈ \ , ⊂ Λ. 
 

It is not difficult to see that for any fixed ⊂ Λ and ̅ ∈ \ , function Δ ̅  is a 
transition energy on × , that is, 

 
 Δ ̅ , = Δ ̅ , + Δ ̅ , ,								 , , ∈ .   (6) 

 
Now, let us consider a set = ̅ , ̅ ∈ \ , ⊂ Λ  of transition energies ̅  on ×  parameterized by boundary conditions ̅ ∈ \ , ⊂ Λ. The 

following statement holds true (see also [1]). 
Theorem 3. Let = ̅ , ̅ ∈ \ , ⊂  be a set of transition energies ̅  on ×  parameterized by boundary conditions ̅ ∈ \ , ⊂ . There 

exists a unique transition energy  on ×  such that =  if and 
only if the elements of  satisfy the following consistency conditions: for any 
disjoint , ⊂  and ̅ ∈ \ ∪ , , ∈ , ∈ , it holds 

 
  ∪̅ , = ̅ , .    (7) 

The set = ̅ , ̅ ∈ \ , ⊂ Λ  of transition energies satisfying (7) is 
called a finite-volume transition energy field. This notion was introduced in [1] 
for the case of systems defined in infinite volume (on the integer lattice ℤ , ≥ 1).  

Previously established duality of probability  and energy Δ  allows 
establishing the one-to-one correspondence between systems  and . Namely, 
for every fixed ⊂ Λ, define operators : ̅ , ̅ ∈ \ → ̅ , ̅ ∈ \  
and : ̅ , ̅ ∈ \ → ̅ , ̅ ∈ \  by 

 ̅ , = ln ,			 ̅ = { , }∑ { , }∈ ,			 , ∈ .      (8) 

Then operators : →  and : →  defined by 
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̅ = ̅ ,								 δ ̅ = δ ̅ ,								 ̅ ∈ \ , ⊂ Λ, 
are mutually inverse. Moreover, the elements of  satisfy conditions (5) if and 
only if the elements of  satisfy conditions (7). That means that there is a 
duality between specification (conditional distribution) and transition energy 
field. 

Further, we will establish one of the important properties of the transition 
energy – its additivity. Let = ̅ , ̅ ∈ \ , ⊂ Λ  be a transition energy 
field. Then for any disjoint , ⊂ Λ and ̅ ∈ \ ∪ , , ∈ , , ∈ , 
using (6) and (7), we can write ∪̅ , = ∪̅ , + ∪̅ , = ̅ , + ̅ ,  

and 

∪̅ , = ∪̅ , + ∪̅ , = ̅ , + ̅ , . 
From here it follows, that for the elements of the one-point subsystem ̅ , ̅ ∈\ , ∈ Λ ⊂ , one has ̅ , + ̅ , = ̅ , + ̅ ,    (9) 

for any , ∈ , , ∈ , ̅ ∈ \{ , }, , ∈ Λ. Relation (9) has a simple 
physical meaning. There are two ways to change the state of the system in { , } 
from  to  with the state ̅ in Λ\{ , } unchanged. First, change the state of 
the system at point  from  to  under boundary condition ̅, and then at point 
 from  to  already under boundary condition ̅. Or, starting from point , 

change the state from  to  under the boundary condition ̅, and then, under 
the boundary condition ̅, change it at point  from  to . Naturally, the same 
amount of energy must be spent in both cases. 

A set = ̅ , ̅ ∈ \ , ∈ Λ  of one-point transition energies ̅  on ×  parameterized by boundary conditions ̅ ∈ \ , ∈ Λ, and satisfying 
consistency conditions (9) is called a (finite-volume) one-point transition energy 
field (see also [1, 2]). 

Theorem 4. A function Δ  on ×  is a transition energy if and only if 
it can be represented in the form Δ , = \ , + \{ , } , + ⋯+ \ , , 
where Λ = { , , … , } is some enumeration of points in Λ, |Λ| = , and = ̅ , ̅ ∈ \ , ∈ Λ  is a one-point transition energy field.  

3. Application of the duality. In this section, we will show how the estab-
lished duality between the transition energy and probability distribution can be 
applied to solve a known problem of the description of a finite random field by 
a set of consistent (one-point) conditional distributions.  

This problem was considered by many authors. In the well-known paper 
[3] by S. Geman and D. Geman, it was divided into two questions (tasks). First, 
how one can define (compute) a joint distribution knowing its conditionals? 
And second, the most difficult one, how one can spoil conditional distributions, 
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that is, when a given set of functions are conditional probabilities for some 
(necessary unique) distribution on ?  

As it was mentioned above, the characteristic property (5) of conditional 
probabilities was known and successfully applied to the problem of describing 
lattice random fields by specifications (see [4]). However, one cannot derive the 
characteristic property of one-point conditional probabilities from (5), and such 
property remained unknown for a long time. The consistency conditions for a 
set of one-point probability distributions parameterized by boundary conditions 
to be a one-point subset of some (uniquely determined) specification were 
introduced in [5] for the case of infinite systems. 

The solution to the problem of the describing finite random field by a set of 
consistent one-point conditional distributions was given in [2] using a purely 
probabilistic approach. Below, we will give the solution to this problem based 
on the duality between transition energy and probability. 

 Let = ̅, ̅ ∈ \ , ∈ Λ  be a set of probability distributions ̅  
on  parameterized by boundary conditions ̅ ∈ \ , ∈ Λ, and let =̅, ̅ ∈ \ , ∈ Λ  be a one-point transition energy field. Consider the 
mutually inverse operators = { , ∈ Λ}: →  and = { , ∈Λ}: →  where  and , ∈ Λ, are defined by (8): ̅ , = ̅ , ,				 ̅ = ̅ ,				 , ∈ , ̅ ∈ \ , ∈ Λ. 

Since the elements of  satisfy condition (7), the elements of  cannot be 
arbitrary and have to satisfy appropriate consistency conditions. To find such 
conditions, we note that for all , ∈ Λ, ̅ ∈ \{ , } and , ∈ , , ∈ , 
one has ̅ , + ̅ , = ̅ , + ̅ ,

= ln ̅̅ ⋅ ̅̅  

and ̅ , + ̅ , = ̅ , + ̅ ,= ln ̅̅ ⋅ ̅̅ . 
Hence, the elements of  satisfy condition (7) if and only if the elements 

of  satisfy the following consistency condition: for all , ∈ Λ, ̅ ∈ \{ , } 
and , ∈ , , ∈  it holds 

 ̅ ̅ ̅ ̅ = ̅ ̅ ̅ ̅ . (10) 
A set = ̅ , ̅ ∈ \ , ∈ Λ  of probability distributions ̅  on  

parameterized by boundary conditions ̅ ∈ \ , ∈ Λ, and satisfying the 
consistency conditions (10) is called a (finite-volume) 1-specification.  
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Let us now show how the established relation between 1-specification and 
one-point transition energy field allows constructing the distribution  on  
compatible with , that is, such  that = . 

First, let us find the connection between a probability distribution  and 
its one-point conditional probabilities = ̅ , ̅ ∈ \ , ∈ Λ . Accor-
ding to Theorems 1, there exists a unique transition energy Δ  for  such that = {Δ , }∑ {Δ , }∈ = {Δ , }∈ , 
where we used property (2) of Δ . Further, due to Theorem 4, there exists a one-
point transition energy field Δ = Δ ̅ , ̅ ∈ \ , ∈ Λ  such that {Δ , }∈ = {Δ \ , + Δ \{ , } ,∈+ ⋯ , }. 
Note that by definitions of Δ  and , we have 

 Δ ̅ , = Δ ̅, ̅ = ln P ̅P ̅ = ln ̅̅ ,								 , ∈ , ̅ ∈ \ , ∈ Λ, 
and hence, = \

\ ⋅ \{ , }
\{ , } ⋅ … ⋅ \

\∈ . 
The obtained connection between  and  can be used to define a 

probability distribution compatible with a given 1-specification. Namely, let = ̅ , ̅ ∈ \ , ∈ Λ  be a 1-specification. For any ∈ , put 
 =	 \

\ ⋅ \{ , }
\{ , } ⋅ … ⋅ \

\∈ , 
where Λ = { , , … , } is some enumeration of the points of Λ, = |Λ|. Due 
to (10), this formula is correct, that is, the values of  does not depend on the 
way of enumeration of the points in Λ. It is not difficult to see that  is a 
probability distribution on . Finally, by direct computations, one can show 
that = . 

Hence, the additivity property of the transition energy allowed us to find 
the connection between the joint and conditional distributions, and the 
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consistency conditions of the elements of the one-point transition energy field 
prompted the form of the consistency conditions of the elements of the one-
point conditional distribution.  
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It is shown that in the framework of mathematical physics, energy and probability 

are dual concepts. On this basis, a solution to the well-known problem of describing a 
finite random field by a set of consistent conditional distributions is given. 

 
Լ. Ա. Խաչատրյան, ՀՀ ԳԱԱ թղթակից անդամ Բ. Ս. Նահապետյան 

  
Էներգիայի և հավանականության երկակիությունը վիճակագրական 

ֆիզիկայի վերջավոր մոդելներում 
 

Ցույց է տրված, որ վիճակագրական ֆիզիկայի շրջանակում էներգիան և 
հավանականությունը երկակի հասկացություններ են։ Օգտագործելով այս արդյունքը, 
լուծում է տրվում պայմանական բաշխումների համակարգի միջոցով վերջավոր պա-
տահական դաշտի նկարագրման հայտնի խնդրին: 

 
Л. А. Хачатрян, член-корреспондент НАН РА Б. С. Нахапетян 

 

Двойственность энергии и вероятности в конечных  
моделях статистической физики 

 
Показано, что в рамках статистической физики энергия и вероятность –   

двойственные понятия. На этой основе приводится решение известной проблемы 
описания конечного случайного поля совокупностью согласованных условных 
распределений. 
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