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Introduction. Traditionally, proof theory has been concerned with formal 

representations of the notion of proof as it occurs in mathematics or other 
intellectual activities, but the rapid development of computer science has 
brought about a dramatic change of attitude. Efficiency has become a primary 
concern and this fact has given rise to a whole new area of research in which the 
considerations of complexity playing a major role. Open questions of theoretical 
computer science like P =?NP and NP =?co-NP have tight connection with the 
proof complexities in the field of propositional logic [1]. 

Deep inference is a relatively new methodology in proof theory, consisting 
in dealing with proof systems whose inference rules are applicable at any depth 
inside formulae [2-4]. While the inference rules of well known sequent calculus 
or natural deductions decompose formulas along their main connectives, deep 
inference rules are allowed to do arbitrary rewriting inside formulas. The main 
interesting results about the proof complexity of deep inference are 1) some 
deep-inference proof systems (SKS) is as powerful as Frege ones; 2) there is 
deep-inference proof systems (KS) that exhibit an exponential speed-up over 
cut-free Gentzen proof systems; 3) Frege systems and some deep-inference 
system eKS polynomially simulate the system KS. The reverse relations are 
pointed in [2] as open problems. It is proved here that a Frege system and the 
system eKS have an exponential speed-up over the system KS. 

2. Preliminaries. To prove our main result, we recall some notions and 
notations from [1-4]. We will use the current concepts of the unit Boolean cube 
(E୬), a propositional formula, a tautology, a proof system for propositional logic 
and proof complexities. The language of considered systems contains the 
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propositional variables, logical connectives ¬, &, ˅ and parentheses (,). Note 
that some parentheses can be omitted in generally accepted cases. For the sake 
of simplicity, we consider only formulas in negation normal form. More 
precisely, formulas are generated from a countable set of propositional variables 
and their negations via the binary connectives & and ∨.  

2.1. Considered proof systems and proof complexities. The inference 
rules of system KS (original CoS – calculus of structures) are 

࢏ࢇ  ↓  s    {[ࢇ∨ࢇ¬]&࡮}ࡲ {࡮}ࡲ
ܟ      {࡯∨(࡮&࡭)}ࡲ {[࡯∨࡮]&࡭}ࡲ ↓ ࢉࢇ     {࡭∨࡮}ࡲ {࡮}ࡲ ↓ {ࢇ}ࡲ {ࢇ∨ࢇ}ࡲ  

m 
{[ࡰ∨࡮]&[࡯∨࡭]}ࡲ {(ࡰ&࡯)∨(࡮&࡭)}ࡲ  ,                                                                              (1) 

where A, B, C, and D must be seen as formula variables, and a is a pro-
positional variable or its negation and F{E} means that E is some sub-
formula in F. These rules are called (atomic) identity, switch, weakening, 
(atomic) contraction, and medial, respectively. The rules in (1) are written 
in the style of inference rule schemes in proof theory but they behave as 
rewrite rules in term rewriting, i.e., they can be applied deep inside any 
(positive) formula context. 

In order to obtain proofs without hypotheses, we need an axiom, which is 
in our case just a variant of the rule ai↓: ࢏ࢇ ↓ ࢇ¬  ∨  .ࢇ

A proof in KS uses the axiom exactly once. 
The system eKS (sKS) is obtained from the system KS by adding the 

specific extension (substitution) inference rule [3].  
A Frege system ऐ uses a denumerable set of propositional variables, a 

finite, complete set of propositional connectives; ऐ has a finite set of inference 

rules defined by a figure of the form 
B

AAA m21  (the rules of inference with 

zero hypotheses are the axioms schemes); ऐ must be sound and complete, i.e., 

for each rule of inference 
B

AAA m21  every truth-value assignment, satisfying 

mAAA 21 , also satisfies B , and ऐ must prove every tautology. 

In the theory of proof complexity two main characteristics of the proof are: 
l-complexity to be the size of a proof (= the sum of all formulae sizes) and t- 
complexity to be its length (= the total number of lines). The minimal l- 
complexity (t-complexity) of a formula ߮ in a proof system Φ we denote by 
lФ(߮) (tФ(߮)). 

Let Ф1 and Ф2 be two different proof systems. 
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Definition 2.1.1. The system Ф1 p-l-simulates (p-t-simulates) the system 
Ф2 if there exist the polynomial p() such, that for each formula ߮ provable both 
in the systems Ф1 and Ф2, we have 

 ݈ Фଵ(߮)  ≤ (߮)ݐ Фଵ ݐ )  ((߮)Фଶ ݈ )݌    ≤  . (((߮)Фଶ ݐ )݌  
Definition 2.1.2. The systems Ф1 and Ф2 are p-l-equivalent (p-t-

equivalent), if systems Ф1 and Ф2  p-l-simulate (p-t-simulate) each other. 
It is well-known that any two Frege systems are p-l-equivalent (p-t-

equivalent) [1]. 
It is proved in [3] that  
 Frege systems p-l-simulate (p-t-simulate) the system KS, 
 the system eKS p-l-simulates (p-t-simulates) both the systems KS and 

sKS.  
Definition 2.1.3. If for some sequence of formulas ߮௡  in the two systems ߶ଵ and ߶ଶ for sufficiently large n  is valid ݐథభ(߮௡) = Ω(2௧ഝమ(ఝ೙)) (݈థభ(߮௡) =Ω(2௟ഝమ(ఝ೙))), then we say that the system ߶ଶ has exponential sped-up by lines 

(by sizes) over the system ߶ଵ.  
2.2. Determinative size of formulas. Following the usual terminology we 

call the variables and negated variables literals. The conjunct K (clause) can be 
represented simply as a set of literals (no conjunct contains a variable and its 
negation simultaneously). In [5] the following notions were introduced.  

We call a replacement-rule each of the following trivial identities for a 
propositional formula ψ:                      
0&ψ = 0, ψ&0 = 0, 1&ψ = ψ, ψ&1 = ψ, ψ&ψ = ψ, ψ&¬ψ = 0, ¬ψ&ψ = 0, 
0 ∨ ψ = ψ, ψ ∨ 0 = ψ, 1 ∨ ψ = 1, ψ ∨ 1 = 1, ψ ∨ ψ = ψ, ψ ∨¬ ψ = 1, ¬ψ ∨ ψ = 1,                    
¬0 = 1, ¬1 = 0, ¬¬ψ = ψ. 

Application of a replacement-rule to some word consists in replacing some 
its subwords, having the form of the left-hand side of one of the above identities 
by the corresponding right-hand side. 

Let ࣐ be a propositional formula, let P = {p1,p2,...,pn} be the set of the 
variables of ࣐, and let ) be some subset of 
P. 

Definition 2.2.1. Given σ = {σ1,...,σm} ∈ Em, the conjunct 

 is called ࣐-determinative if assigning 
) to each pij and successively using replacement-rules we 

obtain the value of ࣐ (0 or 1) independently of the values of the remaining 
variables. 

Definition 2.2.2. We call the minimal possible number of variables in a ࣐-
1-determinative conjunct the determinative size of ࣐ and denote it by ds(࣐). 

A tautology is called minimal if it can not be obtained by some substitution 
in a shorter tautology. 

It is proved in [5] that  
1) if for some minimal tautology ࣐ ds(࣐)=m, then the number of 1-࣐-

determinative conjuncts is at least ૛࢓;  
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2) if for some minimal tautology ࣐ there is such ࢓ that every conjunct 
with ࢓ literals is 1-࣐-determinative, then the number of 1-࣐-determinative 
conjuncts is no more than ૛࢓. 

Note that every subformula is formula ones, hence above definitions are 
applicable to subformulas as well.  

By |࣐| we denote the size of a formula ࣐, defined as the number of all 
propositional variables entries in it. If formula is given in negative normal form, 
then it is obvious that the full size of a formula, which is understood to be the 
number of all symbols is bounded by some linear function in |࣐ |. 

3. Main formulas. Before we shall prove the main theorems, we must give 
some auxiliary results.  

3.1. In some papers in area of propositional proof complexity for classical 
logic the following tautologies (Topsy-Turvy Matrix) play key role  

 

  i
ij

n
i

m
jnEn

mn pTTM


 1=1=),,1(, &= 
   

(n ≥ 1, 1 ≤ m ≤ 2n-1). 

 
For all fixed ࢔ ≥ ૚ and ࢓ in above indicated intervals every formula of 

this kind expresses the following true statement: given a 0,1- matrix of order ࢔ ×  we can “topsy-turvy” some strings (writing 0 instead of 1 and 1 instead ࢓
of 0) so that each column will contain at least one 1. 

For the below given Theorem 1. the main tautologies of our consideration 
are ࢔࣐=TTMn, ૛࢔ − ૚  .  

It is not difficult to see that |࢔࣐|=n(2n-1)2n, ds(࢔࣐)=2n-1 and number of 
different ࢔࣐ − ૚ − ࢔conjncts is ૛૛ ܍ܞܑܜ܉ܖܑܕܚ܍ܜ܍܌ -1 .  

3.2. Balanced formulas. A formula A is balanced if every propositional 
variable  occurring in A occurs exactly twice, once positive and once negated. 
For the below given Theorem 2. the main tautologies of our consideration are  

the balanced tautologies QHQn= ∨0≤i≤n &1≤j≤n[⋁ ܓ,ܒ,ഥܑܙ ∨ ⋁  [ ஸܑܓ૚ஸ࢔ஸ࢑ା૚ܑழܑ,ܒ,ܓܙ
(n ≥ ૚). Put         ࢐,࢏ࡽ = ⋁ ܓ,ܒ,ഥܑܙ ∨ ⋁ ≤ ஸܑ  (nܓ૚ஸ࢔ஸ࢑ା૚ܑழܑ,ܒ,ܓܙ ૚, ૙ ≤ ܑ ≤ ૚  ,ܖ ≤ ܒ ≤ ܖۿ۶ۿ  then ,(ܖ = ⋁ ൫࢏ࡽ૚&࢏ࡽ૛ & … &࢐࢏ࡽ& …  and  ܖ൯૙ஸܑஸ ࢔࢏ࡽ&(૚ି࢔)࢏ࡽ&
hence ds(QHQn)=n, therefore the number of  1- ܖۿ۶ۿ-determinative conjuncts 

is at least ૛࢔. It is also not difficult to see, that | QHQn |= 
૜ܖ૛(ܖା૚)૛ − ૚. 

4.Main results. 
Theorem 1. Every Frege system has exponential speed-up over the system 

KS. 
Proof is founded on the two following propositions: 
1) Frege-proofs of tautologies ߮௡  (n ≥ 1) are t-polynomially (l-

polynomially) bounded ( this statement is proved in [6]); 
2) for sufficiently large  n and sequence of formulas ߮௡ the following 

holds: ݐ௄ௌ(߮௡) = Ω(2ଶ೙), therefore ݈௄ௌ(߮௡) = Ω(2ଶ೙) as well. 
The proof of second statement follows from the values of determinative 
sizes of ߮௡ and number of different φ୬ − 1 − determinative conjuncts, 
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as well from possible changes of determinative sizes by applications of  
inference rules of KS: 

ds(¬ܽ ∨ ܽ)=1,      ds(ܤ&[¬ܽ ∨ ܽ]) ≤ ds(B)+1, 
ds([(ܤ&ܣ) ∨ C]) ≤ ds((A&[B ∨ C]),      ds(ܤ ∨  ,ds(B) ≥ (ܣ

ds(ܽ) = ds(ܽ ∨ ܽ),      ds([A∨ C] &[ܤ ∨ D]) ≤ ds(ܤ&ܣ ∨ C&ܦ), 
and some important condition of rule s. 
Theorem 2. The system eKS has exponential speed-up over the system KS. 
Proof is founded on the following propositions: 

1) sKS-proofs of of tautologies ܖۿ۶ۿ (n ≥ ૚) are t-polynomially (l-
polynomially) bounded ( this statement is proved in [3]); 

2) the system eKS p-l-simulates (p-t-simulates) the system sKS [3]. 
3) for sufficiently large  n and sequence of formulas ܖۿ۶ۿ the following 

holds: (ܖۿ۶ۿ)ࡿࡷ࢚ = ષ(૛࢔), therefore (ܖۿ۶ۿ)ࡿࡷ࢒ = ષ(૛࢔) as well. 
The proof of last statement follows from the values of determinative sizes 

of ܖۿ۶ۿ  and number of different 1- ܖۿ۶ۿ-determinative conjuncts. 
Remark. Both theorems can proved only on the base of formulas ܖۿ۶ۿ because it is proved that they have t-polynomially (l-polynomially) 

bounded Frege-proofs (this statement is proved in one of  my previous paper, 
which is now in the process of publication). 

Conclusion. L. Strasburger’s conjectures that KS does not p-simulate 
Frege systems and eKS system are proved. 
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Relations between the Proof Complexities in Frege Systems,  
Deep-Inference Proof Systems KS and еКS 

 
Using the determinative sizes fօr tautologies of some sequences, it is proved in this 

paper that a Frege system and deep-inference proof system еКS exhibit an exponential 
speed-up over the deep-inference proof systems KS both by lines and size of proofs. 

 
Ա. Ա. Չուբարյան 

 
Արտածումների բարդությունների հարաբերությունները Ֆրեգեի 

համակարգերի, խորքային արտածման կանոններով  
КS և еКS  համակարգերի միջև  

 
Օգտագործելով որոշակի հաջորդականությունների նույնաբանությունների որո-

շիչ երկարությունները՝ ապացուցվել է, որ Ֆրեգեի համակարգերը և խորքային արտա-
ծման կանոններով еКS համակարգը ցուցաբերում են էքսպոնենցիալ արագացում խոր-
քային արտածման կանոններով КS համակարգի նկատմամբ՝ և՛ ըստ արտածումների 
քայլերի, և՛ ըստ դրանց երկարությունների: 
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А. А. Чубарян 
 

 Отношение между сложностями выводов в системах Фреге  
и системах глубинных правил выводов КS и еКS 

 
Используя величины определяющих длин тавтологий некоторых последо-

вательностей, доказано, что системы Фреге и система глубинных правил выводов 
еКS проявляют экспоненциальное ускорение относительно системы глубинных 
правил выводов КS как по шагам, так и по длинам выводов. 
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