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1. Introduction. The minimal tautologies, i.e. tautologies, which are not a
substitution of a shorter tautology, play a main role in the proof complexity
area. Really all hard propositional formulas, proof complexities of which are
investigated in many well-known papers, are minimal tautologies. There is a
traditional assumption that minimal tautology must be no harder than any
substitution in it. This idea was revised at first by Anikeev in [1]. He had
introduced the notion of monotonous proof system and had given two examples
of no complete propositional proof systems: monotonous system, in which the
proof lines of all minimal tautologies are no more, than the proof lines for
results of a substitutions in them, and no monotonous system, the proof lines of
substituted formulas in which can be less than the proof lines of corresponding
minimal tautologies. We introduce for the propositional proof systems the
notions of monotonous by lines and monotonous by sizes of proofs. In [2] it is
proved that Frege systems F no monotonous neither by lines nor by size. In this
paper we prove that substitution Frege systems SF, the well-known
propositional sequent systems PK, PK~ and corresponding systems with
substitution rule SPK, SPK ~are no monotonous neither by lines nor by size.

This work consists of 4 main sections. After Introduction we give the main
notion and notations as well as some auxiliary statements in Preliminaries. The
main results are given in the last two sections.

2. Preliminaries. We will use the current concepts of a propositional
formula, a classical tautology, sequent, Frege proof systems, sequent systems
for classical propositional logic and proof complexity [3]. Let us recall some of
them.

2.1. The considered systems of 2-valued propositional logic. Following
[3] we give the definition of main systems, which are considered in this point.
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2.1.1. A Frege system F uses a denumerable set of 2-valued variables, a
finite, complete set of propositional connectives; F has a finite set of inference

A145..A

rules defined by a figure of the form m(the rules of inference with zero

hypotheses are the axioms schemes); F must be sound and complete, i.e. for
A A

each rule of inference %'"Amevery truth-value assignment, satisfying
A;A,. .. Ay, also satisfies B, and F must prove every tautology.

The particular choice of a language for presented propositional formulas is
immaterial in this consideration. However, because of some technical reasons
we assume that the language contains the propositional variables p, g and p;
,0i (i = 1), logical connectives =, D, Vv, A and parentheses (,). Note that some
parentheses can be omitted in generally accepted cases. We assume also that
Fhas well known inference rule modus ponens.

2.1.2 A substitution Frege system SF consists of a Frege system F

augmented with the substitution rule with inferences of the form Aifor any

substitution ¢ = ((pl-1 Pi, - Pig Diy iy - Pig ) s > 1, consisting of a mapping
from propositional variables to propositional formulas, and Ao denotes the
result of applying the substitution to formula A, which replaces each variable in
A with its image under o. This definition of substitution rule allows the
simultaneous substitution of multiple formulas for multiple variables of A
without any restrictions.

2.1.3. PK~system uses the denotation of sequentl’ - A4 where I is
antecedent and 4 is succedent.

The axioms of PK~ system are

)p-p 2) -T,

where p is propositional variable and T'denotes «truthy.

For every formulas A, B and for any sequence of formulas I', 4 the logic
rules are.

r-4, A B, I'-A A, I'-A, B
o — D=
ADB, I'-A r-4, AoB

A I'-A B, I'-A r-4, A -4, B
Vo ———— -»V——— and -»V————

AVB, I'-A r-4, AvVB -4, AvVB

A, I'-A B, I'-A r-4, A TI'-A, B
A> ——— and A» ——— N—/——/———

AAB, T'-A AAB, I'-A -4, AAB

r-4, A A, T'-A
—_ Q> - q—

—A, I'—>A r-4, -A

The only structured inference rule is

FF,:j, Str.r., where I’ (4") contains I'(4) as a set.

2.1.4. The system PK is PK~ augmented with cut-rule
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ri{—44, A A, I7-4,
I,I—A44,4;
2.1.5. Substitution sequent calculus SPK(SPK™) defined by adding to PK
(PK ™) the following rule of substitution
r-4, A (p)
r-4, A(B)'
where simultaneous substitution of the formula Bis allowed for the variable p,
and where p does not appear in I', A.
Note (1). Let I — A be some sequent, where I' is a sequence of formulas
Ay, A,, ..., A (1 =0) and 4is a sequence of formulas By, By, ..., B, (m = 0).
The formula form of sequent I' —» 4 is the formula ¢ _,, which is defined
usually as follows:
1)A;ANA;AN..NA; DB, VB,V ..VB,, Im=>1
2)A{NA; A ..NA; DL for I =1,m =0 Lis false
3) BiVB,V..VB, forl=0andm >1.
2.2. Proof complexity measures. By |¢| we denote the size of a formula
@, defined as the number of all logical signs in it. It is obvious that the full size
of a formula, which is understood to be the number of all symbols is bounded
by some linear function in |¢|.
In the theory of proof complexity two main characteristics of the proof are:
t- complexity (length), defined as the number of proof steps, [-complexity
(size), defined as sum of sizes for all formulas in proof (size) [3].

Let ¢ be a proof system and ¢ be a tautology. We denote by tg,) (lg)))the

minimal possible value of t-complexity (I-complexity) for all ¢-proofs of
tautology .

Definition 2.2.1. A tautology is called minimal if it is not a substitution of
a shorter tautology. We denote by S(¢) the set of all formulas, every of which is
result of some substitution in a minimal tautology ¢.

Definition 2.2.2. The proof system ¢ is called t-monotonous (I-
monotonous) if for every minimal tautology ¢ and for all formulas ¥ € S(¢p)
td <th(h<19).

Definition 2.2.3. Sequent I' = 4 is called minimal valid if its formula
form ¢r_,, is minimal tautology.

Definition 2.2.4. Sequent proof system & is called t-monotonous (I-
monotonous) if for every valid sequent I' - 4 and for every sequent I; — 4,

such that ¢, 4, € S(@r-4) tl(?_m < tl‘fiﬁl (l?ﬂ sll‘f’ﬁAl).

2.3. Essential subformulas of tautologies

For proving the main results we use the notion of essential subformulas,
introduced in [4].

Let F be some formula and Sf(F)be the set of all non-elementary
subformulas of formula F.
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For every formula F, for every ¢ € Sf(F) and for every variable P by F(;’

is denoted the result of the replacement of the subformulas ? everywhere in F
by the variable P.1f ¢ & Sf(F), then Fyis F.

We denote by Var(F)the set of all variables in F.

Definition 2.3.1. Let P be some variable that p ¢Var(F) and ¢ €

Sf(F)for some tautology F . We say that ? is an essential subformula in Fiff
F} is non-tautology.

The set of essential subformulas in tautologyF we denote by Essf(F), the
number of essential subformulas by Nessf(F) and the sum of sizes of all
essential subformulas by Sessf(F).

If Fis minimal tautology, then Essf (F) = Sf(F)

Definition 2.3.2. The subformula ¢ is essential for valid sequent I' — A if
it is essential for its formula form.

In [4] the following statement is proved.

Proposition 1. Let Fbe a tautology and ¢ € Essf(F), then

a) in every F-proof of Fsubformula @ must be essential either at least
in some axiom, used in proof or in formula A;> (A;2 (...DAp)...)2B

. i A1Ay. Am

for some used in proof inference rule ——,
b) in every SF-proof of F, where -2, Ai, ,Ai (k>1) are used

g1 ap Ok

substitution rules, subformula® must be essential either at least in
some axiom, used in proof, or in formula A; (4, 2(...2 4,)...)2 B

A1Ay.Am

for some used in proof inference rule , and or must be

result of successive substitutions o; , oy,, ..., oy for 1< iy, iy, ..., iy

< kin them.
Note (2) that for every Frege system the number of essential subformulas
both in every axiom and in formula A; 2(4, o(...2 A,,)...)2 B for every

Ay

. A1A7..Am . .
inference rule T is bounded with some constant.

Note (3). It is not difficult to prove that all above statements are true for
every formula form of valid sequent and axioms and rules of above mentioned
sequent systems.

2.4. Main Formulas. It is known, that in the alphabet, having 3 letters, for
every n > 0 a word with size n can be constructed such, that neither of its
subwords repeats in it twice one after the other [5].

Let @y, @y, ..., @, be some of such words in the alphabet {a, b, c}. In [4] the
formulas 1, are obtained as follow:

For n >0 let Y414 = (Po © 71py). Let the formula v;,,, for the
subwords

Qis1, Xz, - @y (1 < 0 < n) be constructed then:

1)ifa; =atheny;n, = (P; 2 0i) Aig1n;
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2)ifa; =bthen;n = (=p; Vi) 2 Yivin;

ifa;=ctheny;y = (=P APV Yivin

As formula Un (Do, P1, P2y v r Pn)WE take the formula
Y11 (Po, P1, D2, -, Pn), TOr which we have [,|= 6@ (n) and all subformulas
Yin(1<i<n+1l)are essential for i,, therefore Nessf(y,)=2(n) and
Sessf(y,) = 2(n?).

Note (4). As neither of these essential subformulas of formulas y,,cannot
be obtained from other by substitution rule, it is proved in [4] that formulas
Y, require more or equal than n steps and n? size both in the Frege systems and
substitution Frege systems. It is obvious, that this statement is valid for sequent
— 1P, for the all mentioned sequent systems also.

3. Main results. Here we give the main theorem, but at first we must give
the following easy proved auxiliary statements.

Lemma 1. a) The minimal t-complexity and [-complexity of Frege proofs
and thus of substitution Frege proofs for formula p> p are bounded by
constant.

b) For each formulae A and B the minimal t-complexity of Frege proofs
and thus of substitution Frege proofs for formula A > (=4 > B) is bounded by
constant, just as its minimal l-complexity is bounded by c'max( | A, | B]) for
some constant c.

Lemma 2.a) If F is minimal tautology and p is some variable that
p € Var(F), then the formula p > F is also minimal tautology, and all
essential subformulas of formula F are essential for formula p > F.

b) If — F is minimal valid sequent and p is some variable that p &
Var(F) then sequent — p D F is also minimal valid sequent, and all essential
subformulas of sequent — F are essential for sequent - p D F.

Theorem. Every Frege system F, substitution Frege system SF, sequent
systemsPK, PK~, SPK, SPK~are neither t-monotonous nor [-monotonous.

Proof. Let us consider the tautologies

Pn=p 2 wn' anz_'(p > P) > l/]n and an(p > p) Dy,
where y,are the formulas from previous section and variable P is not belong to
Var(y,,). Note that for every n formula «a,, (sequent — «,,) belongs to S(¢;,,)
(S(= ¢@,)). According to the statement of Lemma 2. every formula ¢, is
minimal tautology and the sequent— ¢,, is minimal valid sequent.

For every n the formula a,, can be deduced in every Frege system F as
follows: at first we deduce formula pop, then B,=(p>op)>oa,and lastly a,by
modus ponens. From statement of Lemma 1 we obtain for lengths and sizes of
proofs in every Frege system for the set of formulas «,, the bounds 0(1) and
O(n) accordingly. It is obvious that for more “stronger” substitution systems
Frege the bounds are no more.

By statements of Lemma 2 and Note (4) we obtain for lengths and sizes of
proofs in every Frege system and substitution systems Frege for the set of
formulas ¢, the bounds £2(n) and 2(n?) accordingly.

17



Now we give deduction of the sequent — — (p2p) y,in the system
PK ~as follows:
p-p
~(p>p)
~(pop)—
—(p2p)~YPn

~= (p2p) 2YPn

It is obvious, that the bounds for lengths and sizes of proofs in system
PK ~for the set of sequents — a,, are O(1) and O(n) accordingly, therefore for
more “stronger” systems PK, SPK,SPK ™ the bounds are no more.

By statements of Lemma 2 and Note (4) we obtain for lengths and sizes of
proofs in the systems PK, PK~,SPK,SPK~ for the set of sequents — ¢,the
bounds 2(n) and 2(n?) accordingly.

Remark. Above results only for Frege systems are parts of publications [6,
7].
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In this work we investigate the relations between the proofs complexities of
minimal tautologies and of results of substitutions in them in some systems of 2-valued
classical propositional logic. We show that the result of substitution can be proved
easier, than corresponding minimal tautology, therefore the systems, which are
considered in this paper, are no monotonous neither by lines nor by size.

Q. 4. Mhwnpnuyuh

Bpjupdtp wunypuyhtt npudwpwintpju npnowh wpnwsdw
hwiwlupgbph hunljm pymuttpp

Zhnwgnujws £ dpthdw) tnyiwpwiunipniitiph b tpubgnid wknunpnipmnio-
utph wpunwsdwb pupnmipmibtbph vhol hwpwpbpnipmiip npnpwyh Eplupdtp
wunypuyhlt puuwut npudwpuinipju hwdwlwpgbpnud: 8nyg k wpydk), np mbnu-
nnuwb wpyniip hwbinhuwgnn pwbwdbbpp upnn G wpnwsyty wykih htow, wyn huly
wuwwndwnny ghtnupyus hwdwlupglpp Untinnnt sk
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I'. B. Ilerpocsin

O HeKOTOPBIX CBOMCTBAX HECKOJBKHUX CUCTEM
JI0Ka3aTeJLCTBA 2-3HAYHOI JOTMKH BBICKA3bIBaHHII

HccnenoBana cBsi3b MEXIY CIOXHOCTSAMHU J0Ka3aTe€IbCTB MHHHMMAJbHBIX TaB-
TOJIOTHH M pe3ylibTaTaMH IMOJICTAHOBOK B HMUX B HEKOTOPHIX CHCTEMax 2-3HaYHOM Kiac-
CHYECKOM JIOTMKU BbICKa3blBaHUM. [loka3aHO, 4TO pe3ynbTaT MOJICTAHOBKU JOKa3bl-
BaeTCs TPOIIE, YeM COOTBETCTBYIOIIAS MUHHMAaJbHAS TAaBTOJOTHS, IIOTOMY paccMaT-
pUBacMbIC B CTaTbe€ CHUCTEMBI HE SBIITIOTCS MOHOTOHHBIMH HH II0 JIMHHSAM, HH IIO

pasmepy.
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