ZUBUUSUUF SPSNFØBNFUUERF UQGUBFU UGUTEUНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫQUYNF88UER

<u>Хшипр</u> Том 118 2018 Volume

№ 3

MATHEMATICS

MSC2010: 30H99, 30E05

A. M. Jerbashian, J. Pejendino

On Dirichlet Type Spaces A_{ω}^2 over the Half-Plane

(Submitted by academician V.S. Zakaryan 19/XII 2017)

Keywords: Dirichlet spaces, boundary values, biorthogonality, interpolation.

- **1. Introduction.** This paper is devoted to an analysis of some Dirichlet type Hilbert spaces A_{ω}^2 of functions holomorphic in the upper half-plane $G^+ := \{z : \operatorname{Im} z > 0\}$, which are similar to the case p = 2, $\gamma = 0$ of the considered in [1, 2] larger spaces $A_{\omega,\gamma}^2$, though the new spaces are included in the Hardy space H^2 over G^+ . Initially, some extensions of the statements of Theorems 4, 5 and 6 of [2] are proved, which relate with the orthogonal projection and isometry. Then, the spaces $A_{\omega}^2 \subset H^2$ are introduced by the requirement that the derivative of a function belongs to a larger space $A_{\omega,0}^2$, and some results on representations, boundary properties, isometry with H^2 , interpolation, biorthogonal systems and bases are obtained for the spaces $A_{\omega}^2 \subset H^2$. The reproducing kernel of the considered spaces A_{ω}^2 , which also provides the approximations, in a sense is better than the Cauchy kernel or rational functions [3], since its singularity on the real axis can be integrable.
- **2. Extension of the Results on** $A_{\omega,0}^2$ **Spaces.** This section gives some extension of the statements of Theorems 4, 5 and 6 of [2] to some spaces $A_{\omega,0}^2$, where the functions are restricted by some other condition at ∞ . We start by several definitions from [1, 2].

Definition 2.1. $A_{\omega,\gamma}^2$ $(0 is the set of those holomorphic in <math>G^+$ functions f which satisfy the Nevanlinna type condition

$$\liminf_{R \to +\infty} \frac{1}{R} \int_{\beta}^{\pi-\beta} \log^{+} \left| f\left(\operatorname{Re}^{i\theta} \right) \right| \left(\sin \frac{\pi (\vartheta - \beta)}{\pi - 2\beta} \right)^{1-\pi/\chi} d\vartheta = 0, \tag{2.1}$$

For sufficiently small $\rho > 0$ and $\beta = \arcsin \frac{\rho}{R} = \frac{\pi}{2} - \chi$, and simultaneously

$$\left\|f\right\|_{p,\omega,\gamma}^{p} := \iint_{G^{+}} \left|f\left(z\right)\right|^{p} \frac{d\mu_{\omega}\left(z\right)}{\left(1+\left|z\right|\right)^{\gamma}} < +\infty,\tag{2.2}$$

where $d\mu_{\omega}(x+iy) = dxd\omega(2y)$ and it is supposed that ω is of a class $\Omega_{\alpha}(-1 \le \alpha < +\infty)$, i.e. ω is given in $[0, +\infty)$ and satisfies the following conditions:

- (i) ω is non-decreasing in $[0,+\infty)$, $\omega(0)=0$ and there exists a strictly decreasing sequence $\delta_{\ell} \downarrow 0$ such that also $\omega(\delta_{\ell})$ is strictly decreasing;
- (ii) $\omega(t) \succ \prec t^{1+\alpha}$ for some $\Delta_0 \ge 0$ and any $\Delta_0 \le t < +\infty$

($f(t) \succ g(t)$ means that $m_1 f(t) \le g(t) \le m_2 f(t)$ for some constants $m_{1,2} > 0$). The Lebesgue space $L^p_{\omega,\gamma}$ is assumed to be the set of those functions in G^+ , which satisfy only the condition (2.2).

Note that $A_{\omega,\gamma}^2$ $(1 \le p < +\infty, -\infty < \gamma < 1, \omega \in \Omega_\alpha, \alpha \ge -1)$ is a Banach space with the norm (2.2) (see Proposition 1.2 in [1]) and it becomes a Hilbert space for p = 2. Later we shall deal with the M. M. Djrbashian kernel

$$C_{\omega}(z) := \int_0^{+\infty} e^{izt} \frac{dt}{I_{\omega}(t)}, \quad I_{\omega}(t) := \int_0^{+\infty} e^{-tx} d\omega(x) = x \int_0^{+\infty} e^{-tx} \omega(x) dx$$

(see Section 2 of [2]) which for any $\omega \in \Omega_{\alpha}$ $(-1 \le \alpha < +\infty)$ is holomorphic in G^+ and becomes the $2+\alpha$ -order of the ordinary Cauchy kernel when $\omega(t) = t^{1+\alpha}$ $(\alpha > -1)$. Note that if $\widetilde{\omega}$ is the Volterra square of ω , i.e. $\widetilde{\omega}(0) = 0$ and

$$\widetilde{\omega}(x) = \int_0^x \omega(x - t) d\omega(t), \quad 0 < x < +\infty, \tag{2.3}$$

Then $\widetilde{\omega} \in \Omega_{1+2\alpha}$ and $I_{\omega}^{2}(x) = I_{\widetilde{\omega}}(x)$ $(0 < x < +\infty)$ by Lemma 4 of [2].

Theorem 2.1. If $\omega \in \Omega_{\alpha}$ $(-1 \le \alpha < +\infty)$ and $\omega(0) = 0$, then:

 1^0 . The orthogonal projection of $L^2_{\omega,0}$ to $A^2_{\omega,0}$ can be written in the form

$$P_{\omega}f(z) = \frac{1}{2\pi} \iint_{G^{+}} f(w)C_{\omega}(z - w)d\mu_{\omega}(w), \quad z \in G^{+}.$$
 (2.4)

 2^{0} . The following representations are true for any function $f \in A_{\infty,0}^{2}$:

$$f(z) = \frac{1}{2\pi} \iint_{G^{+}} f(w) C_{\omega}(z - \overline{w}) d\mu_{\omega}(w)$$

$$= \frac{1}{\pi} \iint_{G^{+}} \text{Re}\{f(w)\} C_{\omega}(z - \overline{w}) d\mu_{\omega}(w), \quad z \in G^{+}. \tag{2.5}$$

Remark 2.1. In the case of power functions $\omega(t) = t^{1+\alpha}$ ($\alpha > -1$), formulas (2.5) become the representations found in [8] (see also in [9]). For absolutely continuous measures \$d\omega\$ and spaces defined in a somehow different way, over multidimensional tube domains, the first line of (2.5) was obtained in [10, 11].

The next theorem is the analog of the Paley-Wiener Theorem for $A_{\omega,0}^2$.

Theorem 2.2. If $\omega \in \Omega_{\alpha}$ $(-1 < \alpha < +\infty)$ and $\omega(0) = 0$, then the space $A_{\omega,0}^2$ coincides with the set of functions representable in the form

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{izt} \frac{\Phi(t)}{\sqrt{I_{\alpha}(t)}} dt, \quad z \in G^+, \quad \Phi \in L^2(0, +\infty), \tag{2.6}$$

where $\|\Phi\|_{L^{2}(0,+\infty)} = \|f\|_{A^{2}_{0,0}}$, and

$$\Phi(t) = \frac{1}{\sqrt{I_{\omega}(t)}} \int_0^{+\infty} e^{-tv} \widehat{f_v}(t) d\omega(2v), \qquad (2.7)$$

where \hat{f}_{v} is the Fourier transform of the function f on the level iv.

Remark 2.2. For somewhat different spaces over tube domains of \mathbb{C}^n with absolutely continuous measures $\omega(t)dt$, an analog of Theorem 2.2 is proved in [10].

Remark 2.3. Let $S = \bigcup_{\alpha=-1}^{+\infty} \Omega_{\alpha}$. Then, the union of spaces $\bigcup_{\alpha \in S} A_{\omega,0}^2$ coincides with the set of all functions representable in the form

$$f(z) = \int_0^{+\infty} e^{itz} \Psi(t) dt, \quad z \in G^+,$$

where $e^{-\varepsilon t}\Psi(t) \in L^2(0,+\infty)$ for any $\varepsilon > 0$.

Theorem 2.3. If $\omega \in \Omega_{\alpha}$ $(-1 < \alpha < +\infty)$, $\omega(0) = 0$ and $\widetilde{\omega}$ is the Volterra square of ω (2.3), then the space $A_{\widetilde{\omega},0}^2$ coincides with the set of all functions representable in G^+ in the form

$$f(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} C_{\omega}(z - t) \varphi(t) dt, \quad \text{where} \quad \varphi \in L^{2}(-\infty, +\infty).$$
 (2.8)

For any $f \in A_{\overline{a}_0}^2$, the function

$$\varphi_0(z) = L_{\omega} f(z) := \int_0^{+\infty} f(z + i\sigma) d\omega(\sigma)$$

is the unique one in the Hardy space H^2 over G^+ , for which (2.8) is true. Besides, $\|\varphi_0\|_{H^2} = \|f\|_{A^2_{\bar{\omega},0}}$, and $\varphi - \varphi_0$ is orthogonal to H^2 for any function $\varphi \in L^2(-\infty, +\infty)$ which provides the representation (2.8). Further, the operator L_{ω} is an isometry $A^2_{\bar{\omega},0} \to H^2$, and the integral (2.8) defines $L^{-1}_{\bar{\omega}}$ in H^2 .

3. Definition of Dirichlet type spaces A_{ω}^2 , representations, isometry, a boundary property. Now we introduce some Dirichlet type spaces A_{ω}^2 which are subsets of the Hardy space H^2 in G^+ . Then we prove some representations, an isometry formula and some boundary properties of functions from A_{ω}^2 .

Definition 3.1. Assuming that $\omega_0 \in \Omega_\alpha$ $(0 \le \alpha < +\infty)$ is continuously differentiable in $(0, +\infty)$ and $\omega_0(x) \ge Mx$ $(0 < x < +\infty)$ with some M > 0, we set

$$\omega_0(x) := \omega_0'(x)$$
 and $\omega_1(x) := \int_{-\infty}^x \omega_0(x-t)d\omega_0(t)$, $0 < x < +\infty$,

and define A^2_{ω} as the set of those functions f holomorphic in G^+ , for which

$$f' \in A^2_{\omega_{1},0} \text{ and } \lim_{y \to +\infty} f(x+iy) = 0, \quad -\infty < x < +\infty.$$
 (3.1)

Also, we set $||f||_{A_{\infty}^2} := ||f||_{A_{\infty}^2}$.

Note that the above definition is correct, since $\omega_1 \in \Omega_{1+2\alpha}$ by Lemma 4 of [2]. Everywhere below, the functions ω , ω_0 and ω_1 are assumed to be as above. Further, one can see that Lemma 4.2 in [12] is true also when there $\alpha = 0$, and therefore, if $\omega = \omega_0$ ' is a positive, nonincreasing in $(0, +\infty)$ function such that

$$\int_0^1 \{t\omega_0'(t)\}^{-1} dt < +\infty, \text{ then for any } z = x + iy \in G^+$$

$$C_{\omega}(z) = L_{\gamma} \left(\frac{1}{-iz} \right) = \int_{0}^{+\infty} \frac{d\gamma(t)}{-i(z+it)},$$

where γ is a nondecreasing function in $(0,+\infty)$, such that $\gamma(0) = 0$ and $\gamma(t) \leq [\omega_0 '(t)]^{-1}$, $0 < t < +\infty$, and hence the function C_ω is holomorphic out of the negative imaginary half-axis, and the origin is an integrable singularity.

One of the representations of the next theorem is an analog of that of the Paley-Wiener Theorem (see, eg. [13], Theorem 11.9 at p. 186), while the other one gives an explicit isometry between A_{ω}^2 and the Hardy space H^2 over the half-plane.

Theorem 3.1. 1^0 . A_{ω}^2 is a Hilbert space and $A_{\omega}^2 \subset H^2$. Besides, A_{ω}^2 coincides with the set of all functions representable in the form

$$f(z) = \frac{1}{\sqrt{2\pi i}} \int_0^{+\infty} e^{izt} \frac{\Phi(t)}{\sqrt{I_{\omega}(t)}} dt, \quad z \in G^+,$$
 (3.2)

where $\Phi \in L^2(0,+\infty)$, and $\|\Phi\|_{L^2(0,+\infty)} = \|f\|_{A^2_{\varpi}}$.

 2^{0} . A_{ω}^{2} coincides with the set of all functions representable in G^{+} as

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} C_{\omega}(z - t) \varphi(t) dt, \quad \varphi(z) \in H^{2}, \tag{3.3}$$

where $\|\varphi\|_{H^2} = \|f\|_{A^2_{\omega}}$. Formula (3.3) defines an isometry $H^2 \to A^2_{\omega}$, the inversion of which is

$$\varphi(z) = L_{\omega}f(z) := \int_0^{+\infty} f'(z+it)\omega(t)dt, \quad z \in G^+.$$
(3.4)

The functions of the Dirichlet type spaces A_{ω}^2 possess nontangential boundary values out of some exceptional, zero omega-capacity sets on the real axis. Note that the mentioned omega-capacity is introduced in [14] as a generalization of the considered in [7] half-plane analog of Frostman's well-known alpha-capacity. Below, we give a somehow modified, but equivalent to that of [14] definition.

Definition 3.2. Let $E \subseteq (-\infty, +\infty)$ be a Borel measurable set. Then E is of positive ω -capacity, or $C_{\omega}(E) > 0$, if for any R > 0 there exists a finite Borel measure $\sigma \ge 0$ supported on $E \cap (-R, R)$, $(\sigma \prec E \cap (-R, R))$, such that

$$S_R := \sup_{z \in G^+} \int_{-R}^R |C_{\omega}(z-t)| d\sigma(t) < +\infty.$$

If there is not such a measure, i.e. $S_R = +\infty$ for some R > 0 and any finite, nonnegative Borel measure $\sigma \prec E \cap (-R, R)$, then E is of zero ω -capacity, or $C_{\omega}(E) = 0$.

Proposition 3.1. Since the functions $f \in A_{\omega}^2$ possess representations of the form (3.3), Lemma 4.4 of [14] implies that these functions have nontangential boundary values f(x) at all points $-\infty < x < +\infty$, except a set of zero omegacapacity.

4. Biorthogonal systems, bases and interpolation. The explicit form (3.3) of an isometry between the Hardy space H^2 over the half-plane G^+ and the spaces A_ω^2 permits to convert any result of additive character in H^2 into a similar statement in A_ω^2 . In particular, for p=2 the results of [15, 16] on biorthogonal systems and interpolation in H^p ($1) imply some similar statements in <math>A_\omega^2$. Almost all of these statements are given in the below propositions. For simplicity, we assume that $\{z_k\}_1^\infty$ is a sequence of *pairwise different* points in G^+ . It is said that $\{z_k\}_1^\infty \in \Delta$, if the sequence $\{z_k\}_1^\infty$ is uniformly separated, i.e.

$$\inf_{k \ge 1} \prod_{j=1, j \ne k}^{\infty} \left| \frac{z_j - z_k}{z_j - \overline{z_k}} \right| = \delta > 0.$$
 (4.1)

Note that this relation implies the validity of the Blaschke condition

$$\sum_{k=1}^{\infty} \frac{\text{Im } z_k}{1 + \left| z_k \right|^2} < +\infty \tag{4.2}$$

which is necessary and sufficient for the convergence of the Blaschke product

$$B(z) = \prod_{k=1}^{\infty} \frac{z - z_k}{z - \overline{z_k}} \frac{\left| 1 + z_k^2 \right|}{1 + z_k^2}$$

with zeros at $\{z_k\}_1^{\infty}$ to a holomorphic function everywhere in the finite complex plane, except the closure of the set $\{\overline{z_k}\}_1^{\infty}$.

The inequality (3.21) of [15] is transferred to the following proposition. **Proposition 4.1.** If $\{z_k\}_1^{\infty} \in \Delta$, then for any function $f \in A_{\omega}^2$ the following inequality is true: $\sum_{k=1}^{\infty} \text{Im } z_k |L_{\omega} f(z_k)|^2 \leq C ||f||^2$, where C > 0 is a constant independent of f.

Before giving some other propositions on approximation and interpolation in A^2_{ω} , note that the functions

$$r_k(z) = \frac{1}{z - z_k}$$
 and $\Omega_k(z) = \frac{B(z)}{z - z_k}$, $k = 1, 2, ...,$

are of H^2 in G^+ . Hence, all functions $L^{-1}_{\omega}r_k(z) := r_{k,\omega}(z)$ and $L^{-1}_{\omega}\Omega_k(z) := \Omega_{k,\omega}(z)$ (k=1,2,...) are of A^2_{ω} , and one can verify that $r_k(z) = -iC_{\omega}(z-\overline{z_k})$. Theorem D and some other results of [15] imply the following statement.

Proposition 4.2. If the sequence $\{z_k\}_1^{\infty}$ does not satisfy the Blaschke condition, i.e. the series (4.2) is divergent, then the systems $\{-iC_{\omega}(z-\overline{z_k})\}_1^{\infty}$ and $\{\Omega_{k,\omega}(z)\}_1^{\infty}$ are complete in A_{ω}^2 .

Further, a transformation in the conditions (1.16), (1.17) of [15] (or (2.2), (2.3) of [16]) leads to the introduction of a subset $A_{\omega}^2\{z_k\} \subset A_{\omega}^2$ of functions f for which there exist some $g \in H^2$ such that for almost all $-\infty < x < +\infty$ the nontangential boundary values of g(-z)B(z) from inside the lower half-plane $G^- = \{z : \operatorname{Im} z < 0\}$ coincide with those of the function $L_{\omega}f \in H^2$ form inside G^+ . Evidently, $A_{\omega}^2\{z_k\} \subset A_{\omega}^2$ can be considered only under the condition (4.2). By Theorem 2 of [16] we get the following proposition.

Proposition 4.3. The systems $\{-iC_{\omega}(z-z_k)\}_1^{\infty}$ and $\{\Omega_{k,\omega}(z)\}_1^{\infty}$ are biorthogonal:

$$\left(-iC_{\omega}(z-\overline{z_k}),\,\Omega_{v,\omega}(z)\right)_{A^2_{\omega}} = \begin{cases} 1, & if \quad v=k,\\ 0, & if \quad v\neq k. \end{cases}$$

The next proposition is implied by Lemmas B and 1.1 of [15].

Proposition 4.4. If $f \in A_{\omega}^2$, then:

1⁰. f belongs to $A_{\omega}^{2}\{z_{k}\}$ if and only if

$$\Psi(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{L_{\omega} f(t)}{B(t)} \frac{dt}{t - z} \equiv 0, \quad z \in G^+,$$

where $L_{\omega}f(t)$ and B(t) are the boundary values of $L_{\omega}f(z) \in H^2$ and $B \in H^2$.

2⁰. The following orthogonal decomposition is true: f(z) = F(z) + R(z) $(z \in G^+)$, $||f||_{2,\omega}^2 = ||F||_{2,\omega}^2 + ||R||_{2,\omega}^2$, where $F \in A_{\omega}^2\{z_k\}$, $R = L_{\omega}^{-1}[B\Psi] \in A_{\omega}^2$.

By Theorems 4.1 and 5.2 of [15] we get the next proposition.

Proposition 4.5. Each of the systems $\{-iC_{\omega}(z-\overline{z_k})\}_1^{\infty}$ and $\{\Omega_{k,\omega}(z)\}_1^{\infty}$ is a basis in $A_{\omega}^2\{z_k\}$ if and only if $\{z_k\}_1^{\infty} \in \Delta$.

Using formulas (4.29), (4.31) and a formula from the proof of Theorem 5.2 in [15] we get the next proposition.

Proposition 4.6. If $\{z_k\}_1^{\infty} \in \Delta$, then any function $f \in A_{\omega}^2\{z_k\}$ is representable in G^+ by both series

$$f(z) = \sum_{k=1}^{\infty} c_k(f) C_{\omega}(z - \overline{z_k}) = \sum_{k=1}^{\infty} L_{\omega} f(z_k) \Omega_{k,\omega}(z) \quad with \quad c_k(f) = (f, \Omega_{k,\omega}),$$

which converge in the norm of A_{ω}^2 and uniformly inside G^+ .

Theorem 4.2 of [15] implies the next proposition.

Proposition 4.7. If $\{z_k\}_1^{\infty} \in \Delta$, then any function $f \in A_{\omega}^2$ is representable as $f(z) = \sum_{k=1}^{\infty} c_k(f) C_{\omega}(z - \overline{z_k}) + \psi(z)$, where the series is convergent in A_{ω}^2 and uniformly in G^+ , and the following inclusions are true: $\psi(z) = L_{\omega}^{-1}[B(z)\Psi(z)]$ and $\psi(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{L_{\omega}f(t)}{B(t)} \frac{dt}{t-z} \in H^2$.

By Theorems 5.1 and 5.2 of [15] we get the next proposition.

Proposition 4.8. The following statements are true.

 1^0 . If $\{z_k\}_1^{\infty} \in \Delta$ and $\{w_k\}_1^{\infty}$ is a sequence of complex numbers for which

 $A = \sum_{k=1}^{\infty} \operatorname{Im} z_k \left| w_k \right|^2 < +\infty, \ then \ there \ is \ a \ unique function \ f_0 \in A_{\omega}^2 \{z_k\} \ such \ that$ $L_{\omega} f_0(z_k) = w_k \quad (k=1,2,\ldots) \quad and \quad \left\| f_0 \right\|_{f_0 \in A_{\omega}^2} \leq C_{\delta} A, \quad where \quad C_{\delta} > 0 \quad is \quad a \quad constant$ depending solely on δ of (4.1). This function is expanded in the series

$$f_0(z) = \sum_{k=1}^{\infty} w_k \Omega_{k,\omega}(z), \quad z \in G^+,$$

which converges in the norm of A_{ω}^2 and uniformly inside $z \in G^+$.

 2^0 . Conversely, if the set of the sequences $\left\{(\operatorname{Im} z_k)^{1/2} f'(z_k)\right\}_1^{\infty}$ with all possible functions $f \in A_{\omega}^2$ coincides with the space l^2 of sequences of complex numbers, which possess finite sums of squares of modules, then $\{z_k\}_1^{\infty} \in \Delta$.

The work is done within the frames of University of Antioquia CIEN Project 2016-11126.

Institute of Mathematics, Faculty of Exact and Natural Sciences, University of Antioquia, Cl. 67, No. 53-108, Medellin, Columbia e-mail: armen_jerbashian@yahoo.com, dafevar_754@hotmail.com

A. M. Jerbashian, J. Pejendino

On Dirichlet Type Spaces A_{ω}^2 over the Half-Plane

Some extensions of the results of the first author related with the Hilbert spaces $A_{\omega,0}^2$ of functions holomorphic in the half-plane are proved. Some new Hilbert spaces A_{ω}^2 of Dirichlet type are introduced, which are included in the Hardy space H^2 over the half-plane. Several results on representations, boundary properties, isometry, interpolation, biorthogonal systems and bases are obtained for the spaces $A_{\omega}^2 \subset H^2$.

Ա. Մ. Ջրբաշյան, Ջ. Պեքենդինո

Դիրիխլեի տիպի A_ω^2 տարածություններ կիսահարթությունում

Տրված են համահեղինակներից առաջինի՝ կիսահարթությունում հոլո-մորֆ ֆունկցիաների $A_{\omega,0}^2$ տարածություններին վերաբերող որոշ արդյունքների ընդլայնումներ։ Ներմուծված են նոր, Դիրիխլեի տիպի, հիլբերտյան A_{ω}^2 տարածություններ, որոնք պարունակվում են կիսահարթության Հարդիի H^2 տարածության մեջ։ $A_{\omega}^2 \subset H^2$ տարածություններում ստացված են արդյունք-

ներ ներկայացումների, եզրային հատկությունների, իզոմետրիայի, ինտերպոլյացիայի, բիորթոգոնալ համակարգերի և բազիսների վերաբերյալ։

А. М. Джрбашян, Дж. Пехендино

Пространства А типа Дирихле в полуплоскости

Даны расширения некоторых результатов первого из соавторов, относящиеся к пространствам $A_{\omega,0}^2$ функций, голоморфных в полуплоскости. Введены новые гильбертовы пространства A_{ω}^2 типа Дирихле, содержащиеся в пространстве H^2 Харди. В пространствах $A_{\omega}^2 \subset H^2$ получены результаты о представлениях, граничных свойствах, изометрии, интерполяции, биортогональных системах и базисах.

References

- 1. *Jerbashian A. M.* In: Operator Theory: Advances and Applications. 158. Basel/Switzerland. Birkhauser Verlag, 2005 P. 141-158.
- 2. Jerbashian A. M., Jerbashian V. A. Calculation Methods and Function Theory (CMFT). 2007. V. 7. № 2. P. 205-238.
- 3. Walsh J. L. Interpolation and Approximation by Rational Functions in the Complex Domain. Ann Arbor, Michigan, Amer. Math. Soc. Coll. Publ. XX. Edwards Brothers Inc. 1956.
- 4. Jerbashian A. M. Complex Variables. 2005. V. 50. P. 155-183.
- 5. *Jerbashian A. M.* Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 2014. V. 49. P. 17-22.
- 6. *Koosis P.* Introduction to H^p Spaces. Cambridge University Press. 1998.
- 7. Jerbashian A. M. Advances in Complex Analysis and Applications. Springer. 2005.
- 8. *Shamoian F. A., Djrbashian A. E.* Topics in the Theory of A^p_{α} Spaces. Berlin. Teubner Texte zur Mathematics. 1988.
- 9. *Ricci F., Taibleson M.* Annali Scuola Normale Superiore-Pisa, Classe di Scienze. 1983. Ser. IV. V. X. P. 1-54.
- 10. *Karapetyan A. O.* Soviet Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 1988. V. 23. P. 90-95.
- 11. *Karapetyan A. O.* Soviet Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 1990. V. 25. P. 1-19.
- 12. *Jerbashian A. M.*, *Restrepo J. E.* Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 2016. V. 51. P. 51-61.
- 13. Duren P. L. Theory of H^p Spaces. Academic Press. 1970.
- 14. *Jerbashian A. M., Restrepo J. E.* Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 2016. V. 51. P. 111-124.
- 15. Djrbashian M. M. Math. USSR Sbornik. 1982. V. 42. P. 1-70.
- 16. Djrbashian M. M. Math. USSR Izvestya. 1979. V. 13. P. 589-646.