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1. Introduction. This paper is devoted to an analysis of some Dirichlet
type Hilbert spaces A’ of functions holomorphic in the upper half-plane

G" ={z:Imz >0}, which are similar to the case p=2, y=0 of the considered
in [1, 2] larger spaces A, , though the new spaces are included in the Hardy

space H”over G . Initially, some extensions of the statements of Theorems 4, 5
and 6 of [2] are proved, which relate with the orthogonal projection and
isometry. Then, the spaces A2 c H* are introduced by the requirement that the

derivative of a function belongs to a larger space A’,, and some results on

@,0
representations, boundary properties, isometry with H?, interpolation,
biorthogonal systems and bases are obtained for the spaces A2 c H®. The
reproducing kernel of the considered spaces A’, which also provides the
approximations, in a sense is better than the Cauchy kernel or rational functions
[3], since its singularity on the real axis can be integrable.

2. Extension of the Results on A2, Spaces. This section gives some

®,0
extension of the statements of Theorems 4, 5 and 6 of [2] to some spaces A;_O,
where the functions are restricted by some other condition at «. We start by
several definitions from [1, 2].

Definition 2.1. A, (0<p<+eo,—co<y<2) is the set of those

holomorphic in G* functions f which satisfy the Nevanlinna type condition

(sinMJ_ do=0, (2.1)
T-2p8
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For sufficiently small p>0 and f= arcsin% = %— %, and simultaneously

p . P d/ua)(z)
11, =11 (+1zD’

where du,(x+iy)=dxdw(2y) and it is supposed that @ is of a class Q,

(2.2)

£(z)

(-1<a<+w),i.e. @ is given in [0,+oo) and satisfies the following conditions:
(i) o is non-decreasing in [0,+), @0)=0 and there exists a strictly
decreasing sequence &, 4 0 such that also @(d,) is strictly decreasing;

(ii) a(t) =< 1" for some A, >0 and any A, <7< +oo

(f()><g@) means that m, f(r)< g(r) <m,f(t) for some constants m,, >0).

The Lebesgue space L, is assumed to be the set of those functions in G*,

which satisfy only the condition (2.2).

Note that Aj,'y (IS p<+oo,—0<y<l,we Q,, a>-1) is a Banach space

with the norm (2.2) (see Proposition 1.2 in [1]) and it becomes a Hilbert space
for p=2. Later we shall deal with the M. M. Djrbashian kernel

oo dt R S N Gl
cw(z):=j0 e e Iw(z)._jo e dw(x)_xjo e o (x)dx
(see Section 2 of [2]) which for any we Q, (-1<a<+e) is holomorphic in
G* and becomes the 2+« -order of the ordinary Cauchy kernel when
a(t) =1 (a>-1) . Note that if @ is the Volterra square of @, i.e. @(0)=0 and

a(x) = I:a)(x— Ddat), 0<x<+oo, (2.3)
Then we Q,,,, and I2(x) = I.(x) (0<x<-+e0) by Lemma 4 of [2].
Theorem 2.1. If we Q, (-1<a <+x) and o(0)=0, then:

1°. The orthogonal projection of L,, to A,, can be written in the form

1 —
RS @ == [ FOIC, (2= widp, (W), z€G". (2.4)

2°. The following representations are true for any function f e A,

: 1 -
F@ =[] FOC, (2= widpy(w)

:%H@Re{f WIC,(z—wdp,(w), zeG". (2.5

l+a

Remark 2.1. In the case of power functions @(¢) =¢"** (> —1), formulas

(2.5) become the representations found in [8] (see also in [9]). For absolutely
continuous measures $d\omega$ and spaces defined in a somehow different
way, over multidimensional tube domains, the first line of (2.5) was obtained in
[10, 11].

The next theorem is the analog of the Paley-Wiener Theorem for A} .
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Theorem 2.2. If we Q, (-1<a<+ew) and a(0)=0, then the space A,
coincides with the set of functions representable in the form

L g @@ N
f@)= x/ﬁj" e mdt, e G*, ®e X(0,4), (2.6)
where ||<l> PP :|| f . and
D(1) = e F. (Oda(2v), (2.7)

1 J-+<x=
,Iw(l) 0

where ]Af‘, is the Fourier transform of the function f on the level iv .

Remark 2.2. For somewhat different spaces over tube domains of C" with
absolutely continuous measures @(t)dt, an analog of Theorem 2.2 is proved in

[10].
Remark 2.3. Let S=|J~ Q,. Then, the union of spaces |J _ A2,
coincides with the set of all functions representable in the form
f@=["eWwdr, zeG’,
where e “W¥(f)e I(0,+0) for any £>0.
Theorem 2.3. If weQ, (-l<a<+w), a(0)=0 and ® is the Volterra
square of @ (2.3), then the space A;){O coincides with the set of all functions

representable in G* in the form
f(z)= zl | T C, (z-0)p()dt, where @e I*(—,+co). (2.8)
P
Forany fe A> , the function

0D =L,f(2):= | f(z+io)daxo)

is the unique one in the Hardy space H* over G*, for which (2.8) is true.
Besides, ||%||H: =[] . » and @-g, is orthogonal to H* for any function

@e [ (—o0,+o0) which provides the representation (2.8). Further, the operator I,
is an isometry A’ — H”, and the integral (2.8) defines L, in H’.

3. Definition of Dirichlet type spaces A’, representations, isometry, a
boundary property. Now we introduce some Dirichlet type spaces A’ which
are subsets of the Hardy space H” in G*. Then we prove some representations,
an isometry formula and some boundary properties of functions from A’ .

Definition 3.1. Assuming that @ e Q, (0Sa<+e) 1is continuously
differentiable in (0,+c) and @,(x) 2 Mx (0 < x < +o0) with some M >0, we set

@,(x):=@,'(x) and @ (x):= J'O @, (x—1)d@, (1), 0< x<+oo,
and define A’ as the set of those functions f holomorphic in G*, for which
fle Ay and  lim f(x+iy)=0, —eo<x< oo, (3.1
y—>+oo
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Also, we set "f"A; =|f '"AZM .

Note that the above definition is correct, since @ € Q,,,, by Lemma 4 of
[2]. Everywhere below, the functions o, @, and @, are assumed to be as above.
Further, one can see that Lemma 4.2 in [12] is true also when there a =0, and
therefore, if w=a,"' is a positive, nonincreasing in (0,+«) function such that

1
J.o {t@, (1)} " dr < +oo, then for any z=x+iye G*

1 teo
Co0)=1, (_j [T dr_

—iz ) —i(z+it)
where y is a nondecreasing function in (0,+e), such that #(0)=0 and
7@)<[@,'(©)]"", 0 <t <+, and hence the function C,, is holomorphic out of the
negative imaginary half-axis, and the origin is an integrable singularity.
One of the representations of the next theorem is an analog of that of the
Paley-Wiener Theorem (see, eg. [13], Theorem 11.9 at p. 186), while the other

one gives an explicit isometry between A’ and the Hardy space H® over the

half-plane.
Theorem 3.1. 1°. A2 is a Hilbert space and A’ c H*. Besides, A’

coincides with the set of all functions representable in the form

e 2O 4 e 32)

1
f(Z)_\/EiIO m ,

where ® e I7(0,+c), and ||q>"f(o,+w) :"f

A2’
2°, A’ coincides with the set of all functions representable in G* as
1
f@===["C,(z=np(t)dt, p(z)e H’, (3.3)
27i I
where |g|| . =||f| . . Formula (3.3) defines an isometry H* — A}, the inversion
of which is
P()=L,f(2):=] [(+iDond, zeG". (3.4)

The functions of the Dirichlet type spaces A’ possess nontangential

boundary values out of some exceptional, zero omega-capacity sets on the real
axis. Note that the mentioned omega-capacity is introduced in [14] as a
generalization of the considered in [7] half-plane analog of Frostman’s well-
known alpha-capacity. Below, we give a somehow modified, but equivalent to
that of [14] definition.

Definition 3.2. Let E ¢ (—,+%) be a Borel measurable set. Then E is of

positive w -capacity, or C,(E)>0, if for any R>0 there exists a finite Borel
measure o >0 supported on EnN(—R,R), (0 < EN(-R,R)), such that

R
S, :=sup LR|cw(z —1ldo(t) < +eo.
&Gt
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If there is not such a measure, i.e. S, =+ for some R>0 and any finite,
nonnegative Borel measure o < EN(—R,R), then E is of zero w -capacity, or
C,(E)=0.

Proposition 3.1. Since the functions fe A. possess representations of the
form (3.3), Lemma 4.4 of [14] implies that these functions have nontangential
boundary values f(x) at all points — < x < +oo, except a set of zero omega-
capacity.

4. Biorthogonal systems, bases and interpolation. The explicit form
(3.3) of an isometry between the Hardy space H> over the half-plane G* and
the spaces A’ permits to convert any result of additive character in H* into a
similar statement in A’. In particular, for p=2 the results of [15, 16] on
biorthogonal systems and interpolation in H” (1< p <+e) imply some similar
statements in A2. Almost all of these statements are given in the below
propositions. For simplicity, we assume that {z,}; is a sequence of pairwise
different points in G*. It is said that {z,}7 €A, if the sequence {z,}; is
uniformly separated, i.e.

. =1z, -2
inf I
k=1

=5>0. 4.1

j=1, j#k ZJ» —Z

Note that this relation implies the validity of the Blaschke condition

o Imz, (4.2)

k:11+|Zk|2

which is necessary and sufficient for the convergence of the Blaschke product

B =[] i i

— 2
k=l 2— 2, 1+Zk

with zeros at {z,}; to a holomorphic function everywhere in the finite complex

plane, except the closure of the set {Z}j" .

The inequality (3.21) of [15] is transferred to the following proposition.
Proposition 4.1. If {7, )7 € A, then for any function fe A’ the following

inequality is true: Z:lemzk|wa(zk)|2SC||f||2, where C>0 is a constant

independent of f .
Before giving some other propositions on approximation and interpolation
in A2, note that the functions

R =—— and =29 k=12,

-z -z
are of H* in G*. Hence, all functions L7, (z):=r,,(z) and L Q,(2):=Q, ,(2)

(k=1,2,...) are of A2, and one can verify that r,(z) =—ij(z—Z). Theorem D
and some other results of [15] imply the following statement.
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Proposition 4.2. If the sequence {z,}; does not satisfy the Blaschke
condition, i.e. the series (4.2) is divergent, then the systems {—ij(z—Z)}T and
{Q, (2} are complete in A,.

Further, a transformation in the conditions (1.16), (1.17) of [15] (or (2.2),
(2.3) of [16]) leads to the introduction of a subset A’{z,} < A2 of functions f
for which there exist some ge H? such that for almost all —co < x < +oo the non-
tangential boundary values of g(—z)B(z) from inside the lower half-plane
G ={z:Imz <0} coincide with those of the function L f e H* form inside G".
Evidently, Al{z,} < A, can be considered only under the condition (4.2). By
Theorem 2 of [16] we get the following proposition.

Proposition 4.3. The systems {-iC,(z—z,))" and {(Q, () are
biorthogonal:

L, if v=k,

0, if v#k.

The next proposition is implied by Lemmas B and 1.1 of [15].

Proposition 4.4. If fe A, then:

1°. f belongs to A{z,} if and only if

Y(z)= L =L dr =0, zeG",
27i= B(t) t-z

where L,f(t) and B(t) are the boundary values of L,f(z)e H> and
Be H”.

2°. The following orthogonal decomposition is true: f(z)=F(z)+R(z)
ze G, |7, =IFI., +R[;, . where Fe A{z}. R=L)[B¥]e A,

(i€ (z=20. 2,,(2) . ={

By Theorems 4.1 and 5.2 of [15] we get the next proposition.

Proposition 4.5. Each of the systems {—ij(z—g)}‘l"’ and {Q, (D} isa
basisin Al{z.} if and onlyif {z,}7 € A.

Using formulas (4.29), (4.31) and a formula from the proof of Theorem 5.2
in [15] we get the next proposition.

Proposition 4.6. If (z, 7€ A, then any function fe Al{z} is

representable in G* by both series
F@ =36 (NICo(-2) = S L f (2R 0(2) With ¢(1)=(1.2,.),
k=1 k=1

which converge in the norm of A and uniformly inside G*.
Theorem 4.2 of [15] implies the next proposition.
Proposition 4.7. If {z,}7 € A, then any function fe Al is representable as

f(z):Z::lck(f)cw(z—ZHy/(z), where the series is convergent in Al and
uniformly in G*, and the following inclusions are true: w(z)=L)[B(z)¥(z)]

and y(z) = 4J‘_+:—L‘“f“) e H?.

27i B(t) t—z
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By Theorems 5.1 and 5.2 of [15] we get the next proposition.
Proposition 4.8. The following statements are true.
1°.If (2.} € A and {w,} is a sequence of complex numbers for which

A=)"Imz, |wk|2 < +oo, then there is a unique function f,e A’{z,} such that
k=1

Lfo(z)=w, (k=12.) and |f,| _.<C;A. where C;>0 is a constant

depending solely on 6 of (4.1). This function is expanded in the series
L@D=DwQ (2, zeG",
k=1

which converges in the norm of Al and uniformly inside ze G.
2°. Conversely, if the set of the sequences {(Imzk)”zf'(zk)}lw with all
possible functions fe A2 coincides with the space I’ of sequences of complex

numbers, which possess finite sums of squares of modules, then {z,}’ € A.

The work is done within the frames of University of Antioquia CIEN
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On Dirichlet Type Spaces Ai over the Half-Plane

Some extensions of the results of the first author related with the Hilbert spaces

A(ZD,0 of functions holomorphic in the half-plane are proved. Some new Hilbert spaces

A(zD of Dirichlet type are introduced, which are included in the Hardy space H? over

the half-plane. Several results on representations, boundary properties, isometry,

interpolation, biorthogonal systems and bases are obtained for the spaces Ai cH’.
U. U. &ppuigjuaty, 8. Mkphunhtun
Yhphhy th whwh Ai nwpwdnpnLhutp jhuwhwpenipmniimd

Spdws kb hudwhbnhtwljubphg wowghtth® Yhuwhwppnipmniinud hnyn-
Unpd Pniulghwutiph Ai,o wnwpwénipnibibphtt Jipwpkpnn npny wpyniip-
Ubph plnuyinidikp: Uipdmsdws tu unp, Yhphhgkh whwh, hhpbpuju A2
nwpwsnipniibkp, npnlp wupnibwldnd ki jhuwhwppnipput Zwupnhh A2
nwpwsmpyub Ukg: A2 ¢ H? nupwsmpniuibpnid unwgjué b wpmnynilp-

201



ubp tbipjuyugnidubph, kqpuyhtt hwnlnipniutph, hgndbnphwyh, htnbpyn-
yughuyh, phnppngniiuy hunfwljupgtph b puqhutibph qpupbpgur;:

A. M. Ixxpoamsn, Ix. [lexenauno
2
IpocrpancTBa A, Tuna Jlupuxie B MOTyNJI0CKOCTH

I[aHI;I pacminp€Hra HEKOTOPHIX PE3YJILTATOB IIEPBOI'0 U3 COABTOPOB, OTHOCAIIUECA

K MPOCTPAHCTBAM AZJO GyHKIMHA, TOIOMOpGHBIX B MONYIJIOCKOCTH. BBEIEHBI HOBBIE
IUI60EPTOBBI IPOCTPAHCTBA Aﬁ, Trma Jlupuxie, cofepKantecs B mpoctpanctse H>

Xapau. B mpocrpaHcTBax AZ, C H’ nonydeHsl pesylIbTaThl 0 MPEACTABICHHAX, Ipa-

HHUYHBIX CBOﬁCTBaX, HU30METPUHU, UHTEPIIOIALUH, 6I/IOpTOFOHaJ'II>HI>IX cucteMax u 0Oa-
3HCax.
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