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1. Introduction. Mathematical modelling is the basis of the study of most
modern problems in physics and development of many modern innovative
technologies. Among other research analyses requiring the ajoplicaf
mathematical modelling methods is the analysis of diffesarface contacts in
layered structures. In the context of coupled physicomechanical fieisls
problem becomes particularly important with relation to the stufielynamic
processes in the composite joints with rough surfaces.

Back in 1882 Hertz solved the problem of contact between twdicelas
bodies with curved surfaces [1]. This classical result tmed mechanics of
contact interaction for about a century, before Johnson, KendaRaimerts are
founded a similar solution for adhesive contact [2] (JKR - tjedfurther
progress in mechanics of contact interaction in the mid-20thurgens
associated with Bowden and Tabor [3]. They were the first totifgethe
importance of accounting forthe surface roughness of bodies in tontac
Roughness causes the true contact area between the sliding bitbsis a
much smaller than the apparent contact area. These views chiagabction
of many studies in tribology significantly, and contributedards a number of
theories of contact mechanics. Pioneering works in thid fiee the works of
Archard [4], which concluded that when the elastic contacoo§ir surfaces,
the contact area is approximately proportional to the normrak fd~urther
important contributions to the theory of rough surfaces made Goeehand
Williamson [5] and Persson [6]. The main result of these warkhe proof
that the actual area of contact of rough surfaces ina rough approximation,

1 wish to express special gratitude to my teachrer RRels Belubekyan and dedi-
cate this research to his eightieth anniversary.
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proportional to the normal force, whiles the characteristica oértain micro
contact (pressure, the size of micro contact) weakly depends on the load.

In the basis of mathematical modelling there have always plegsical or
geometric hypothetical conceptions of some components of physiconwdhan
fields. To model new mathematical boundary value problems in meshahi
deformable solid,considering the nature of the quantitiesridesy physical
and mechanical fields in thin-walled elements various hypotheses on
distributions of characteristic variables of the stressirstifields were
introduced [7]-[10]. An analogical approach was successfully appliedto
electromagnetoelastic fields, thus developing the theory aftrefeagneto-
elasticity of thin-walled structural elements [11].

Fig.1. Contact of rough surfaces in three-layer piezodielectric composite.

To simulate the effects associated with the influence offmoegs on the
amplitude coefficients of reflection and transmission at thendbany between
two dielectric media with different optical parametdérss proposed to use two
new parameters: large-scale and small-scale RMS rougHi&s3he problem
of contact interaction simulation with pressed to each other séimité elastic
rough bodies, and characterized by two widely different typical length scales fo
theroughness [13], is solved by the method of successive approximations.

The solution to the problem, which belongs to the class of free boundary
problems, is obtained by calculating the Green's function, whicltesethe
pressure distribution with the normal displacements on the boufidgryThe
problem is then formulated as Feedhole’s integral equation ofrghéifid with
logarithmic kernel. When two bodiesare separated by a snsthnde of
surface roughness, adhesion and friction begin to play an impootanh their
interaction. The evaluation of the effect of roughness becomesmetyr
difficult when the roughness is comparable to the distance between the bodies

In the paper [15] the current status of the problem is thesciand the
problem with the introduction of dispersion forces of physical origin
explored. It was experimentally shown additives of forces intredlweith the
effect of roughness on the interaction between bodies. In [16], bylahg
Green's function, which relates the pressure distribution in normal
displacements at the interface to the adhesive contact, th@sobnducted an
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analysis of adhesive rough surface contact. In another vigiksfudied the
influence of surface roughness on the entered modelled dispésies. The
analysis is carried out opinions on crucial issues.

By introduction of surface-exponential functions (Surface Exponential
Function-SEF), the present article formulates new hypotheses dheut
distributions of the relevant characteristic of physicomedahnivalues
(hypotheses MELS) depending on the model of docking of rough-boundary
environments with different coupled physicomechanical fields.

2. Model contacts adjacent to half-spaces with rough surfaces. Let's
consider a dynamic process at the junctions of the two halespaith rough

surfacesy = h(x) andy=h,(x) respectively (Fig.1).
{
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Sm—the average pitch of the irregularities of the profile, Rnax—maximum height of the

profile.

The coordinate systemoyis chosen so that the surface is perpendicular to

the parallel roughness, and the agis is parallel to these lines.The connection
via elastic rough surfaces always forms a three-lagenposite. Different
methods of layer connection lead naturally to the formation ftdrdnt three-
layer packets on the surface zone of the compounds. A sehddmafunc-

tiony =h_(x); m=12, which defines the main parameters of roughness (Fig.

2) plays a decisive role in connecting surfaces. The roughnessicalepicts
the number, shape and size of the projections and depressions of the
irregularities. Considering the fact that the height of thgeptions and
depressions of the surface roughness ranges from 0.08 to 500 microsepr
and the ratio of the average step roughness on the height peofif one

hundredS,, ~100[R ., it can be assumed thgi(x) 0L {R} in relation to

the functions of roughness.

Generally, the materials of the adjacent environments ean Hifferent
properties and can be described by different thermodynamic marismtiizs.
Reservations, regarding the nature of the coupling of physidds fizr the
linearity/nonlinearity of the thermodynamic material ratioseach composite
environment, will be addressedupon the necessity in certain tasks.

121



Firstly, we’ll consider the case of pasted half-spacesn fiwhich by
producingof material permanent adhesive environment to zero, wéh@et
problem of rough surfaces with a vacuum gap of variable thickness.

Model-1 Two elastic deformable half-space made of materials charac-
terized by associated physical fields (electro-elastiaiagneto-elasticity,
thermos-elasticity, etc.) interconnected by glue with releyarysical and
mechanical characteristics. Then in each half-space

Q, ={[x| <, <y <hy (), <}
and
Q, ={[{<eoih (05 y <7 <o}
the  corresponding equations of the environment are solved,
L.[u.0.¢.8]=0; nO{L2.} and L,[u.¢¢.9]=0, nO{12.}
taking into account thermodynamic material ratios of this renment:
o(u,9,¢,F) - thermo-mechanical stressf)(ui,¢,w,z9) - displacement
electric field, é(ui,¢,t/1,ﬂ) magnetic field,&8(u,, @,¢,3)- temperature. The
number of equation$ D{l; 2;..} and unknown variables naturally depend on
the associated physical and mechanical fields.
In the inner adhesive slif), :{|x| <oo,h(x)< y<h,(x),|7 < 00} of va-
riable  widthé (x) =|h,(x)-=h,(x)|, equations for an adhesive glue

materialLSn[ui,¢,l//,z9]=0; nD{ 1;2;.}., with corresponding thermody-

namic material ratio, are solved.
The three sets of equations mentioned above -

Lan[ui,(zﬁ,(//,z?]:O; n0{ 12} and boundary conditions on each
surfacey =h (x) , with varying normal ﬁ(m)(x):{ngm)(x,hﬂ(x))}
wherem=12.,

™ (xh,00) =2 Lo,
n (thx) \/1+[h'“(X)]2 \/1+[h'“(X)]2

together with the terms of the attenuation of the relevantigdmechanical
fields at infinity form a mathematical boundary task in tieee-layer
composite with rough surfaces in contact.

Considering the fact that in linear theories of mechanitateck to
physicomechanical fields all the connections between physieddsfiare
identical, the material ratio could formally be recorded in shene form:

Oi = CioUnm ¥ Qi@ S, =054 — B, Where except for the known

ijnm~"n,m mij i, j

mechanical stressee

i » the elastic deformation tensar ; and the elastic
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constants €= (C

ijmn

)M, the generalized expression for the material
thermodynamic relations is shownthrough the signs of tensors ofcahys
constantsa,, O{e,;:dy: Ay} and By, O{ &, fhmi G} » the components defining
characteristics S, (x;.t)0{D,,(x.t):B,(x 1):6(x 1}  and  potentials
qo(xj,t)D{qb(xj 1) (x.1):8(x t)} of the corresponding physical fields , and

coordinate systerfix, ¥, z} £{x,X,, Xy} .

To avoidcumbersome formulas, we will assume that the matedgsent
half-spaces (thick plates) as well as the thin adhesyer lare piezoelectric
crystals of hexagonal symmetry cl&ssm, which are polarized along the

axisoz|p.

In this case, the boundary conditions of the linear electréi@tasand the
conditions of decay at infinity, with the indicasj 0{1;2;3 andm{1,2 ,
have the following form:

(™ (1, (0).0) = a2 (., (0).0) B (x b, ®) =0 (2.2)
(D™ (x,hy, (x),1) = DP (x,h, (x),1)) ™ (x,hy, () = O

(2.3)
W™ (%, (),8) = W (x, 1, (x),) (2.2)

P (X0, (X),1) = @5 (X, R, (X),1) (2.5)

IE[n)m w, (% y,t) - 0 IE[n)m b, (xyt) -0 (2.6)

It is known that, when the coordinate asz”[_) is parallel to the axes of
the polarizations of all the composite crystals, in any plamgx,
(slicex, = const ), quasi-static equations of electro elasticity in each layer

2,,(n) 2 2, 2,,(m) 2
o°u, ve 09, =pn6 ué ’ Q.mauj e 0°g, -0
ox0x, " oxox, ot "™ Ox.0X, 0% 0X,,

(2.7)

Clj km

allow separation of non-electroactive plane strain state
{u (%, %) ;u,(x,x,t);0,¢  from electroactive anti-plane deformed state

{010, (%%, £) 8 (%, %, 1)} [18].

This will make it possible to separately investigdie effect of surface
roughness on the propagation of the wave signal of flat deformatibriha
wave signal of electroactive anti-flat deformation.

In this case, the connection of heterogeneity environments inothed
composite is of geometric nature, and isdetermined by the funcfangface
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irregularities =, ={y =h,(X)}; m=12.featuring in the boundary conditions (2.2)

and (2.5).

Model-2. Two elastic deformable half-space made of materials
characterized by associated physical fields (electro-elgsti magneto-
elasticity, thermos-elasticity, etc.) are connected by &hade of thermal
crushing, so that depressions of one of the rough surfaces wedbfil
protrusionsof the other.

Then at the junction of the connection of the half-spaces, a thin
transversely-inhomogeneous layer with varying physical andhamical

characteristics of the materigh®(y) 2 { ca (V) p2(y);eSy); 8(3)(y)} is

formed. Naturally, the virtual surfaces of the formed layer can be espegsby
lines (surfaces) of maximal depressions of the correspomdirghness. Then,

allocating virtual layer thickness H =(R,+R)/2, where
=|maxh, (x)- minh, () are the maximum value of the depressions of

the rough edges, respectively, for functign$y) ,the characteristic requirement
will be the condition of equality of physicomechanical constant langs

y=%(H/2) with  y(-(H/2))=y® A{c,jﬁ’n,p“) else (1’} and y(+(H/2))=
= A{qjﬁ,ﬂ,p(z) edie (2’} respectively. The heterogeneity of the material can be
presented by any integrable function” =f(y,R,,y'™); m=12. with the
following conditions on the surfaces of the virtual layé(-(R +R,)/4)=y,;
f(R+R,)/4)=y,. As a result of diffusion of the deformed middle surface
y =(h(x) +h,(x))/2 of the formed non-homogeneous layer, it is natural to
impose a new conditior ((h,(x) +h,(x))/2) = (1, +,)/2 -

For the studies of dynamic processes@mm piezoelectric hexagonal
symmetry class with this model, with the indiceefl; 2, the equations in

(2.7) will be solved in homogeneous half-space3 :{|x| <ow,—0<y<
_(R1+R2)/4,|z|<oo} andQ*z ={|X| <°°'(R1+ Rz)/ 4< y<oo,|z| < oo} . In

virtual dedicated thin layerQ; ={| <o, ~(R +R,)/ 4<y< (R +R,)/ 4|7 <}
equations of electro-elasticity with variable coefficients idlsolved:

0 u(n) 0 ¢n aZU(n)
|ka(X2) £ Qjm( 2) Xm = ,On( 2) atg
’ (n) az¢n —_
&m (%) axaxm = Em(X;) 6)90xm_0 (2.8)

Obviously, the study of the solutions to these equations become much more
complicated, since variables coefficients lead to a nonlidependence of the
amplitude and phase functions of the propagating wave signal [19]Bj2he
boundary conditions in (2.2) and (2.3) are given get much simpler. Thgecha
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of the surfaces normaii™ (x) :{nl(m’ (x,hm(x))} in surfacey =h_(X), is

replaced by the unit normal ofsmooth surfaces
n™ ={0;21;,¢ y=+(R +R,)/4=const.

07 (%D "OR +R,)/41)-07 &, C 1 DR+ R,Y 4t = ¢, (2.2%)
D (% (-)"OR +R,)/41)-DY &, C ' OR+R,Y 41 = ¢, (2.3%)
W™ (% (CDTOR +R,)/41)=w? x,C 1 OR +R, ) 4t ), (2.4%)

(X CD'OR +R,)/41)=¢, K, C 1IN OR + R, Y 41), (2.5%)

In this case the connection of environments, heterogeneity ifothed
composite have a physical nature, and they are determined by thetetiatics
of the functions of surface irregularitieR, =|maxh, (x)- minh, &), which

appear in the boundary conditions (2.2*) and (2.3*). Through the functions of
the physicomechanical characteristics of the environment
{2y p2(y):eR(y):e2(y)}  heterogeneity appears also in the non-homoge-
neous equations piezoelectric (2.8) .

3. The mathematical modelling of boundary value problems. In the
studies of wave processes in formed composites, for the @ahlgtialysis of
the process and the results, a hypothesis (MELS) of the nafurde
distributions of characteristic physicomechanical units, or tearthdynamic
parameters of the formed heterogeneous material, with theofusarface-
exponential functions (SEF) is proposed. This hypothesis must etisire
existence of the characteristic parameters describingigalyand mechanical
fields, both in the equations, and in the boundary conditions of the problem.

Let's assume that a shear electro-elastic wave signdilstributed across
the three-layer composite consisting of a lone polarized pastzdegbectric
glue of two thick layers of piezoelectric crystal ﬁfnmclass hexagonal

symmetry (model-1). Then, the plane strain s{aan;(ex1 X,,1) ;U (X, X5 t 0(} in
the composite is not be inducting, and electro-active antlplaam sitate
{O;O;u3 (%%, 1) (X, ,xz,t)} is described by quasi-static solutions

W, (X, y,t) =W, exp(c 1 a,ky )]ai(kx—ax) ,
¢n(X1 y!t) = {q)()n exp((— :I-)1 ky +%Won exp(‘(_ 1r)anky } &i(kx—ax) (31)

where G, =c!) - elastic moduli shifts,p,- density, e, = €Y -piezoelectric
modules, £, = £ - relative coefficients of dielectric constant of mgtr in
the respective layers=12,2 of the compositea? =1-(«?0?)/(k’G}) -wave
characteristic values; G, =G, (1+ enz/(enGn)) -given shear stiffness of

piezoelectric, - the frequency of a waveformk =(277)/A -wave number
and A -wavelength. In case of respective numbering=%2; in the case of
homogeneous half-spaces, amplitudesand @, are constants.
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In the adhesive layer of variable thickness solutions quresented both in
symmetric and anti-symmetric forms:

W,(x, y,t) ={ Ay, sin@ky )+ A, cosé fy ) &)
da(x y,t)={831sina<y)+ By, cosly )r [ Ay, sing ky ¥ Ay, cos(ky ]}@“‘“‘“‘) (32)
3
To simplify the boundary conditions (2.2)-(2.5), we introduce hypotheses
about distributions of the elastic displacemewgx, y,t) and the potential of

the electric fieldd,(X, y,t) across the thickness of a thin layer of adhesive,

ef® -1
e-1

f(x) _
£,xy0)= S A0 000-4,x N +4,6ch 0D, (33)

where surface-exponential function (SEF)

F(xy) =[ex M}—l}[ﬂe— 3 (3.2)

W, (X, y,t) = [w, (%, h, (x),t) = w, (x,h, (x).0)] + w, x h, (<)1)

[h(9 =h(]
is the characteristic function for non-smooth surfages, (x) and is described

the changes of the requiredunknown valuesin the adhesive layenetsck he
introduced hypotheses of type (3.3) provide for any kind of conjugatiatede
to physicomechanical fields in magneto- (electro-, thermo-)tieldsyered
systems (Magneto-Elastic Layered Syst@hELS) hypothesis). They also
allow to split boundary conditions (2.2)-(2.5) into two groups.

The conjugacy conditions of mechanical stress and electric iodu&.2)
and (2.3)

h() (%) (%, h,(.1) = o § (61, (x).0) + (e b )1)- oG h )1) = 0
h (%) (05 (%, h,00,) =5 0 h,(0),0) + (0 (h )= G L)1) = 0 (3.5)
h () (D (x,hy(x),t) = DF (x,h,(x),1)) + (DY (x,h, ().t )= DY (x h ()1 )) = @
h () (D (x h,(0),t) = D (x,h,(x)1)) + (DL (x.h,6)1)-DP e h ,0)1) = 0 (3.6)
are logged in the form of four algebraic equations with respect t@foplitude
constants{ A, B} {W,; Wy, ® ;P o}

B [{ 1} (0.1, 00,0, @), [x A = 0

From the condition of existence of nontrivial solutionswe obtdie t

transcendental dispersion equation, which determines the freqresponse of
the process

det]B, [{ s} h, €On™ €)a, @K)]|, = ¢ (3.7)

Another group of boundary conditions(2.4) and (2.5), aboutcontingency elastic
displacements and electric potential with respect to four &rdpliconstants

A O{A; A, B.; B}, generates a new inhomogeneous system of four algebraic
equations:

B [{ra} (0.1, ()., (@/k),]x A =h [A h, 0O, ), @K)]  (3.8)
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Hence obtained frequency-amplitudes descriptions for the idatitiin of new
phenomena at the joints between the layers of the compositguar® the
roughness of the surfaces. The presence of roughness on the sofftues

layers transforms the coefficientsé,j[{yg},hm(x),h;n(x),an(w/k),] and

B; [{ 14}, (). 1, (X).a, (@/k),], as well as free termg[A ,h, (X).1, (x).a, (@/k)]
in algebraic equations (3.7*) and (3.8) into complex variables. Tmiagathe
effect of roughness on dispersion, or the possibility of occurrenasohance,
the wave signal must be represented by a complex wave numbeeaquenfty
fluctuationsd=, (x, y,t) = A, (x,y) exp{ & +ik, X~ @ +icw, i} .

Then determinants from (3.7*) and (3.8) are real and imaginary qfaite
wave number and frequency, with their signs will charactéheeanfluence of
roughness on the dispersion, dissipation and resonance in the sigmad
propagation.

It was shown above that in the three-layer composite consisting
interconnected thermal breakdown, lone polarized, two thick piezaoeitgctr
layers of hexagonal symmetry cl&msm, a transversely inhomogeneous layer
(model-2) is formed along the surfaces of the border connection:

Q, ={|{ <o, ~(R+R)/4<y< (R+R,)/ 4]z < oo}
During the propagation of shear electro-elastic wave sigmahe composite,
similar to the case in model-1, plane strain condition is not induced

{ul(xl,xz,t);uz(xl,xz,t);O;C}, and the electroactiveantiplane strain state

{0;0u; (%%, t) 1@ (x, %, 1)} in thick layers is again describedby the quasi-
static solutions in (3.1). Unlike the previous case, virtuadichted
heterogeneous in thickness lag@er the frequency-amplitude nature of the

solutions will obviously depend on the initial roughness of surfdzesigh the
heterogeneity of the material layer. Given the subtlety efvirtuallyformed
inhomogeneous layer, in case of model-2, MELS hypotheses are intloduce
relation to distributions of the physicomechanical diffusion cotsbérthe

created environmenty® (y) é{qﬁ%(y); p(3)(y);q1(f]’(y);£n‘,f')(x)} , with the
selected virtual surfaces gf=+(R +R,)/4=congt : - N ={0;+1,4

f, (x

3) s T
% (X7Y)—T(V( 4 )+V (3.9)

f,(xy) =a(y,, R, (0)) 57 +b(y, R, by, ) B+ () R, 0y ) (3.10)
The characteristic function describing the change of the tidhmamic

constants for the layer thickness,y® é{qfﬁ;p“);q&);gn‘,?} and
2 é{clglfr{; p(z’;qfﬁ’;e,sz)} are thermodynamic constants of the materials of

the respective half-spacesR, =|maxh, (x)- minh, &} -the depth of the

depressions corresponding to the surface roughness.The coeffiofetite
functions f (y) are selected from the attainment of material values of the
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thermodynamic parameters of the virtually created environmetiteirborder
layer

y(s)(_ RLZRZJ =y, y(3)£R1:fR2j =)@, y(3)(hl(x);h2(x)J= y? ;V(l) (3.11)
By introducing hypothesis MELS (3.9) and an exponential function décir
SEF (3.10) we obtain the boundary value problem of electro-etgdstiom the
following equations:

~ | 0°w, 0w, |_ 0w, 0°b,  0°0, _e | 90w, 9w,
Gn > T2 TP > v T 2+ 2

e oy >, ¢ oy g | X dy (3.12)
wheren=1, 2.in the half-space@i and Q*2 accordingly with the solutions of
(3.1), and equations:

o, | 0w, 0%, 0
Gy(x, y){ a>\<l2V3 + ayf}fee,(x,y)[%+%}
0G, w; , 9G, ws, , 0., 00, , 9e,00 ;_ 0.(%Y) w, (3.13)

ox 0x 0y dy Ox ox dy dy ot?
2 2 2 2
& (% y){"axvﬁs+%—yvvf}—sg(x,y)[aaj’i+%}+
oe, 0w3+0e30W3_6£36¢3_6836¢3=0
OXx 0Xx 0y dy O0x ox oy oy
in virtual dedicated inhomogeneous lagkr .
Conditions for the existence of solutions of F(xy,t)2
A(x, y)expi{# (x.y)-at} equations (3.13), and their solution at the selection of

functions for material heterogeneity®(x,y) with different combinations of

boundary terms, have been discussed in articles [19-21]. The lgerdary
conditions  (2.2%)-(2.5%) on the surfaces of the virtual layer
y=+(R +R,)/4=const and the terms of the decay at infinity (2.6) together with

the obtained equations (3.12) and (3.13) form a boundary value problem in
model-2 connection piezoelectricity half-spaces with rough cesfdhe task
here is to study complex transcendental equations. By introducingahe
number k =k +ik,, and frequency fluctuations=a +iw, in aggregate form

into the wave signal, we will identify the influence «afrface roughness on
dispersion, dissipation and resonance in the wave process.

4. About hypothesess MELS. We have already mentioned that the
hypotheses (3.3) and (3.9) provide conjugation of elastic displateand the
potential of electric fields on rough discontinuity surfaces (a@d (2.5) in
model-1, or the equality of thermodynamic constants on the surfaciée of
virtual layer in model-2 .1t is obvious that these hypotheseslan suitable in
problems of composites with materials associated with other physotzmical
fields (magneto-elasticity, thermos-elasticity, etc.) Anothararacteristic
property of the introduced hypotheses is hidden in the choice of surface
exponential functions SEF (3.4) and (3.10), distribution across the thickne

128



ofrequired physicomechanical fields (3.3), or the change of the thenaumity
constants of virtually created environment (3.9). Upon selecticm simpler
distribution functions in thickness, such as

_[_y-hx } Y
f(xy)=| —2~—|, mO{L2.} 4.1

oY) {hz(x)—hl(x) (125 iy
Although it provides conjugation of certain selected components
ofphysicaomechanical fields, depending on the choice of measure

mO{1;,2;..} ;there’s always the risk of losing of some even or odd chaistiter
values in the study material. In this respect, the introduction of SEF ‘ofumct

-1 y-h(x |_ 1 y+(R+R)/4]
1Y) e—l{ex ra(x)—m(x)} J}Or fy(y)_e—l{ex W} 1}(4'2)

is acceptable not only because they provide the conjugation of the
requiredphysicaomechanical fields or thermodynamic constants orh roug
surfaces, but also they introduce existing geometric surfacghness
heterogeneityy =h (x) into the descriptions of physicomechanical fields or

thermodynamic constants ofthe inner thin layer.

5. Conclusions. When homogeneous layers get into contact with rough
surfaces, geometrically or physically inhomogeneous layeorimed in the
borderline area of the contact. Two model compounds of the rough strfaces
the form of piezoelectric sandwich of the composite are selettpdtted
superficially exponential functions SEF constructed hypotheses about
distributions of physical, mechanical and thermodynamic fields thaf
permanent magneto- (electro-, thermo-, etc.) elastic layerst@nss-MELS,
formed in an inhomogeneous layer connection. The introduction of hypsthese
allows to model a mathematical boundary-value problem for diffenaterials
of the composite layers associated with different physicomedidields. A
comparative numerical analysis of results with differboundary problem
modelling will be given by the author in the following articles.
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The Boundary Problem M olelling of Rough Surfaces Continuous M edia
with Coupled Physicomechanical Fields

The presented hypotheses of magnetic- (electrorfihg elastic layered systems
(hypotheses-MELS) are addressed to the modelifgpohdary problem of contact of
rough surfaces of continuous media with associptegical and mechanical fields. In
various models of joints of thick piezoelectric éay combinations is allocated
exponential behaviour of physicomechanical fieldstleermodynamic constants are
given. The effect of surfaces roughness on the t&ms and the thermodynamic
relations is achieved through the choice of surtqeonential functions (SEF).
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22 QUU pnpulhg winwud U. U. Udtnhywul

Shqhjwdbumuhjulwt juywulgdwus nuowbkpny hns thpwjuypkph
wihwppmpiniutkpny kqpiph wdpugdwi tqpuyhtt pugph dngjuynpnudp

Ukpuniskiny dwquhuw (HEjunpw, phpun) wpwédquljwt okpnwynp hwdwlwp-
gtiph hpthnptqutp (hiphotesis-MELS)" hpwjwtwgynud E juyulgqus dhqhjudbuw-
uhjuwt nuownbpny hné dhowjuwyptph wihwpp dwibplunyputph wdpulgdwi
tqnuyht futigph Ungljuynpoud: MhkqnphkjEyuphy pkpubph bpynt nwppbp wdpuy-
gnidubph nhwypbpnid wpwdwgynid E wdpuljgdut dkpddwltpinipuyhtt $hqhynpk
Jud Ephpwswthnpkt wihwdwubn otpwn, npnbn dwlkpbnipwihii-wunhfutught
$nughwbph (SEF) dhongny wpynud ki Ppqhjudbuwthjuljut nquowntph jud
pEpUnphtwdhjujut hwunwnniubph puppudw quppbpp:

U dnuyghwtbph punpmpyudp hpuwbwgynid b dwlbpinipughtt withwp-
pnipiniuibph wqpkgnipiniun kqpuyhtt pungph hwjuwuwpnudubpnud b ynipwljub wnb-
snipjniiubpnud:

Ynen-koppecnonaent HAH PA A. C. ABeTucsin

Mone.lmponalme FpaHI/l‘lHOﬁ 3aJaYd KOHTAKTa HICPOX0BaATbIX
HOBerHOCTeﬁ CILTIOIIHBIX Cpea CO CBA3AaHHBIMU
(i)I/I3I/IKO-MeX3HI/I'-IeCKI/IMI/I MOJIAMH

BB01OM I'HIIOTE3 MAarHUTO (DJIEKTPO, TEPMO) YIPYTUX CIOUCTHIX CUCTEM (THITOTE3BI
— MELS) npoBoautcss MOJEIHMpOBaHUE TPaHMYHOM 3aJadd KOHTAaKTa IIEPOXOBATHIX
MOBEPXHOCTEH CIUIOLIHBIX CPEJi CO CBA3aHHBIMU NONSMU. [IpH pasHBIX MOJEINSAX COCIH-
HEHUI TOJICTBIX IMbE30AMAIEKTPHUECKUX CIIOCB BBIJACISIETCS MPUIOBEPXHOCTHBIN Te0-
METPUYECKU WK (HU3UUECKH HEOTHOPOIHBIH CII0M, B KOTOPOM 33/1a€TCs IIOBEPXHOCTHO-
9KCIIOHEHIIMAILHOE MOBEJACHUE (DU3UKO-MEXaHMYECKUX MOJIeH HIM TePMOJUHAMHUYE-
CKHUX TIOCTOSIHHBIX. BEIOOpOM MOBEPXHOCTHO-3KCTIOHEHIMABHOH (hyHkuuu (SEF)obec-
MCYUBACTCS BIMSHUE MOBEPXHOCTHOMN IIEPOXOBATOCTH B YPaBHEHHSAX U B TEPMOJAUHA-
MHUYECKHX COOTHOIICHHSIX 3a[auH.

Reference

1. HertzH.- Journ. fir die Reine und AngewandteMathematik. B&®idSeite 76.
P. 156-172

2. Johnson K. L., Kendall K., Roberts A. D. - Proc. of the Royal Soc. of London.
Ser. A. 1971. V. 324. P. 301-313.

3. BowdenF. P., Tabor D. - Proc. of the Royal Soc. of London. Ser. A. Mathd
Phys. Sci. 1939. V. 169 (938). P. 391-413

4. Archard, J. F. - Proc. of the Royal Soc. of London. Ser. A. Mathd &hys.
Sci. 1957. V. 243(1233p.190-205.

5. Greenwood, J. A., Williamson JBP. - Proc. of the Royal Soc. of London. Ser.
A. Math. and Phys. Sci. 1966. P. 300-319.

130



11.

12.

13.

14.
15.

16.
17.
18.

19.
20.

21.

Persson BNJ, Bucher F., Chiaia B. - Physical Review B. 2002. V. 65(18). P.
184-206.

Kirchhoff. Vorlesungen uber Math. Physik, Mechanik. LeipzZig83 (3e
u3L.).

Reissner E. - J. Math. and Phys. 1944. V. 23. P. 1.

Tumowenko C. I1. Ilnactuaku u obomouku. M. T'ocrexusgar, 1948. 46Q.

. Ambapyymsan C. A. Teopust aHU30TPOIHBIX IWIACTUH. 2-¢ u3a. M. Hayka. 1987.

360c.

Ambapyyman C. A., baeoacapsn I. E., Beaybexsn M. B. MarHUTOYNIPYTOCTh
TOHKMX IIaCTUH 1 00omouek.M. Hayka. 1977. 324.

Tikhonravov A. V., Trubetskov M. K., Tikhonravov A. A., Duparre A. - Appl.
Opt. 2003. V. 42. P. 5140-5148.

Moxenv A. H., Caneanux P. JI., @edomog A. A. - BeraucnurenpHas MEXaHHKa
crutomHbIX cpen. 2008.T. 1.Ne 4. C. 61-68,

Jackson R. L., Green I. - Tribology Transactions. 2011. V. 54. P. 300-314.
Cocheril Y., Vauzelle R. - Progress in Electromagnetics Research. 2007. V. 75.
P. 357-381.

Carbone G., Scaraggi M., Tartaglino U. — Eur. Phys J E. Soft Matter. 2009. V.
30. Issues 1. P. 65-74.

Svetovoy V. B., Palasantzas G. - Adv. Colloid Interface Sci. 2015. V. 216. P. 1-
19.

Asemucsan A. C. - 3. AH ApmCCP. Mexanunka. 1985.T. 38.Nel. C. 12-19.
Asemucsn A. C. - 3. AH ApmCCP. Mexanuka. 1988.T. 41.Ne5. C. 34-40
Agsemucan A. C., Kamanan A. A. - Bectnuxk TUVYA, cep. MmexaHuka,
MarnHoBeieHne, ManmmaoctpoeHue. 2014.T. 17.Nel. C. 9-25.

Hasanyan D. J., Piliposian G. T., Kamalyan A. H., Karakhanyan M. I. -
Continuum Mechand Thermodynamics. 2003. V. 15. P.519-527.

131



