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In this paper it is shown that the set of all maximum independent sets
of bipartite graph is a distributive lattice, which allows to view the
problem ofgenerating the maximum independent sets of bipartite graph in
a new aspect, namely, to find not all, but only the join-irreducible
maximum independent sets. Also an algorithmproviding these sets is
presented, the complexity of which doesn’t exceed the complexity of the
best algorithm providing just one maximum independent set.

1. Introduction.In this section we present the required preliminaries
that can be found e.g. at [1] and [2].An independent set of a graphG is a
set of its vertices no two of which are adjacent. Sets with the maximum
cardinality are maximum independent sets of G,and their cardinality is
denoted by a(G). The Maximum independent set problem is to find a
maximum independent set of the given graph, whilethe Maximum
independent sets generation problem 1is to report all maximum
independent sets of the given graph.A vertex cover of G is a set of its
vertices incident to all its edges. Note that the complement of a vertex
cover is an independent setand vice-versa, so the complements of
themaximum independent sets are the vertex coversofthe minimal
cardinality. These vertex covers are theminimum vertex covers of G, and
theircardinality is denoted by 7(G). The Minimum vertex cover problem
and the Minimum vertex covers generation problem are defined like the
ones for maximum independent set, and obviously they are equivalent
respectively. A matching of G is a set of its edges no two of which are
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incident. Sets of maximal cardinality are the maximum matchings of G,
and their cardinality is denoted by v(G). It can be observed that if M is a
matching of G and C is a vertex cover of G, then each edge of M is
covered by a separate vertex of C, so it holdsv(G) < 7(G). The
Maximum matching problem is to find a maximum matching of the given
graph, while the Maximum matchings generation problem is to report all
maximum matchings of the given graph.In general case the Maximum
independent set problem and the Minimum vertex cover problem are NP-
complete, while the Maximum matching problem is solvable in
polynomial time. Within the study of these problems, the study of the
special case of bipartite graphs is of crucial importance. Konig’s theorem
states, that for bipartite graphs it holds v(G) = 7(G). It can be checked,
that this formulation is equivalent to a notion that no maximum matching
has an edge connecting vertices of the same minimum vertex cover. This
yields to the fact that for bipartite graphs given a maximum matching,
one can construct a vertex cover in linear time, and vice-versa, which, in
its turn, makes the Maximum matching problem, the Minimum vertex
cover problem and the Maximum independent set problem equivalent to
each other for bipartite graphs. The known algorithms solving the last
two problems find a maximum matching first, and then obtain a
minimum vertex cover or a maximum independent set. In domain of that
algorithms the concept of an augmenting path is a key concept. For a
matching M of a (not necessarily bipartite) graph G path P is calledM-
alternating, if its edges are alternatingly out ofand inside theM; P is
called M-augmenting, if it isM-alternatingand it starts and ends at
vertices unmatched by M. It can be observed, that if P is an M-
augmenting path, then MAP(here A denotes the symmetric difference of
two sets) is a matching of cardinality |[M| + 1.Berge’s theorem states that
a matching is maximum if and only if there are no augmenting paths with
respect to that matching. Thence many known algorithms construct a
maximum matching through the searchof augmenting paths. Here is a
survey on algorithms solving the Maximum matching problem for the
iven bipartite graphwith n vertices and m edges.

1| 0(nm) Hungarian method 1955
210 (\/ﬁm) Hopcroft-Karp algorithm 1971
3|1 0(n?*%%logn) Matrices based algorithm 1981
Push-reliable flow based
15 [
4 O(Tl m/log n) algorithm 1991
_ Graphs compressed
5|0 ((2 log, m)Vn m) representation based algorithm 1991
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1.1. Generation problems.As it is mentioned above, the Maximum
matching problem is equivalent to the Maximumindependent set problem
for bipartite graphs, since there is a linear time constructive
correspondence between the maximum matchings and the maximum
independent sets of a bipartite graph. However, various maximum
matchings correspond to the same minimum vertex cover, and the
generation problems of matching and vertex cover are not known to be
equivalent.It makes sense to consider the notion of complexity of an
algorithm solving a generation problem carefully, as in these problems
the size of output is usually in order higher than the size of the input.
Obviously, each such algorithm requires at least as much time as it is
needed to obtain one output, plus the time needed to report the whole
output. There is an algorithm [2], that given a maximum matching,
enumerates all maximum matchings spending just linear time for each of
them, so obvious is an algorithm solving the Maximum matchings
generation problemfor a bipartite graph with n vertices and m edges in
0(t(m,n) + output size) time, where t(m,n) is the time needed to
obtain a maximum matching at the beginning. For the Maximum
independent sets generation problem there is anO(t(m,n) +
output size)algorithm [4] (note that the output sizes are not the same in
last two bounds), whichobviouslyis asymptotically the best, if it is
required to provide all the maximum independent sets one by one.
However, it might not be the case if there are better ways to provide the
entire set of all maximum independent sets rather than separately
providing each element of it. Next we show that actually there is such
way, and present an algorithm providing the set of all maximum
independent sets in that way in time O(t(m, n)).

2. The lattice of maximum independent sets.Here we refer to some
basic properties of lattices which can be found e.g. at [3]. A lattice is a
partially ordered set in which any two elements have unique supremum,
which is called join, and unique infimum, which is called meet. A lattice
can also be defined as an abstract algebra with join and meet operations
which are commutative, associative and absorptive. If these operations
are also distributive, then the lattice is called distributive.A distributive
lattice can also be defined as a topological space, where the union and
intersection of the sets correspond to the join and meet operations of the
lattice elements.A join-irreducible element of a lattice is one that is not
equal to a join of elements all other than itself. As it follows from
Birkhoff's representation theorem, a finite distributive lattice is
determined by its join-irreducible elements, in sense, that its each
element is uniquely represented as an irreducible join of some of its join-
irreducible elements. In this section we show that the set of all maximum
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independent sets of bipartite graph forms a distributive lattice with
respect to some simple set theoretic operations, and show how to
construct the join-irreducible elements of that lattice.

2.1. The lattice.Let G = (U,V,E) be a bipartite graph. For a set of
vertices W € UUV we will denote Wy =W NU and Wy, =W NV.
Let X and Y be two maximum independent sets of G, and let X denote
the set of all maximum independent sets of G, so X,Y € X'. We define
XVYand X AY as follows:

XVY =X, UY)U X, NY,), @)

XAY =Xy nY,)U(X, UY,). )

It is easy to check that X VY and X AY are independent sets of G.
Moreover, they are maximum independent sets. As X and Y are
maximum independent sets, we have |X| =|Y| = a(G), and as X VY
and X AY are independent sets, we have | X VY| < a(G) and |[X AY| <
a(G). Further, note, that

IXVY|+ | XAY|=|XVY))UXAY)|+|XVY)N(XAY)| =

IXuY|+[XnY|=I|X|+|X| =2a(G),

sowe get [ X VY| =|XAY| = a(G). Thus (1) and (2) define two binary
operations over the set of maximum independent sets of G, that are
V: XXX ->Xand A: X XX — X. It holds the following.

Lemma 1.The triple (XC,V,A) is a distributive lattice.

Proof. Indeed, from (1)and (2) it follows that the set family {X} |
X € X} is closed towards the set union and intersection operations, and
thus forms a distributive lattice with respect to them. Further, there is an
obvious isomorphism between this lattice and (X,V,A), so the lemma is
proved.
Consider the partial order induced in (X,V,A). By definition, for X,Y €
X we have X <Y if and only if X = X AY (which in its turn is the case
ifand only if Y = X VY). From (1) and (2) it follows that it is the case if
and only if X;; € Yy (which in its turn is the case if and only if X}, 2 ;).
We denote by X the top of (X,V,A), that isX := Vyex X. Note that
from(1)it follows, that X}, is the U-part of the union of all maximum
independent sets of G, and X, is the V-part of the intersection of all
maximum independent sets of G. Obviously, also the dual claim holdsfor
the bottom of (X,V,A), which is X = Axcx X. As it is mentioned above
(X,V,A) is determined by its join-irreducible elements. As X is be
bottom, then it is one of them. Next we indicate the others. Recall, that
(X,V,A) is naturally isomorphic to the finite topology(Xy,U,N), where
Xy ={Xy | X € X}. The non-bottom join-irreducible elements of a
finite topology are the closures of its points (the closure of a point is the
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least set containing it).So the closure of u € X, \ X is the least set of
(Xy,U,N) containing u, andobviously the isomorphic image of that set in
(X,V,A) is the least maximum independent set of G containing u. We call
that independent set the closure maximum independent set of vertex u.
Thus the non-bottom join-irreducible elements of (X,V,A) are the closure
maximum independent sets of vertices u € X; \ X;. The next two
lemmas form this claim, and their proof basically explainsthe proof of the
corresponding claim for finite topologies to the terms of lattice (JC,V,A).

Lemma 2./n G, the closure maximum independent set of each vertex
u € Xy \ Xy is join-irreducible.

Proof. Let X be the closure maximum independent set ofu, and let
X=YVZforsomeY,Z € X. Sinceu € X, then from (1) it follows, that
u€Y or ueZ, and as X is the least maximum independent set
containing u, then X < Y or X < Z. On the other hand, since X =Y Vv Z,
we have X > Y and X > Z. Thus we obtain that X =Y or X = Z, which
means that X is join-irreducible.

Lemma 3./n G, if X is a join-irreducible maximum independent set,
thenthe closure maximum independent set of each vertexu € Xy is the X.

Proof. Let for vertices u € Xy, X,, denote the closure maximum
independent set of u. Observe, that from (1) it follows, that Vyex, Xy =
X. On the other hand, for each u € X, sinceX,, is the least maximum
independent set containing u, then it holds X,, < X for all u € X;, which
means that Vyex, Xy < X. Thus we obtain Vyex, X, = X. Since X is
join-irreducible, then for some u € Xy, it holds X = X,,.

Lemma 4.The join-irreducible maximum independent sets of G are
X and the closure maximum independent sets of vertices u € Xy \ Xy.

Proof. Immediately follows from Lemma 2 and

Lemma 3.

In this section we have described the set of maximum independent sets of
a bipartite graph, and in the next two sections we will show how to
maintain that set.

2.2. The least maximum independent set algorithm.As it follows
from

Lemma 4, in order to construct a join-irreducible element of
(X,V,A), one has to construct the least maximum independent set
containing some given vertex of G. Next we discuss a wider problem of
finding the least maximum independent set containing the given set of
vertices R € U UV, if there is one. To do it we first prove some
properties.
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Lemma 5.In G, if X is a maximum independent set and M is a
maximum matching, then each edge of M is incident to exactly one vertex
out of X, and there are no other vertexes out of X.

Proof. Immediately follows from Konig’s theorem. Recall, that the
complement of X, which we denote by X, is a minimum vertex cover of
G, so each edge of M is incident to at least one vertex X. But it is incident
to exactly one vertex of X, and there are no other vertices of X, as
Konig’s theorem states that [X| = |M|.

Corollary.ln G, the union of all sets of vertices unmatched by some
maximum matching iscontained in the intersection of all maximum
independent sets.

Proof. Indeed. If X is some maximum independent set, and u € U is
some vertex not incident to some maximum matching M, then it is also
not out of X, since, as it follows from the lemma, all vertices out of X are
incident to an edge in M. Thus u € X.

Lemma 6./n G, if a vertex u € U is contained in some maximum
independent set X, then for any maximum matching M the endpoint of
any M-alternating path of even length starting at u is also contained in
X.

Proof. Let M be some maximum matching. Note that it is sufficient
to prove the lemma only for an M-alternating path of length two, that is
for a path uv,u,, where (u,v,) € E and (u,,v,) € M, and this case it
obvious. Indeed, as X is an independent set, then v; € X, and as
(uy,v1) € M, then from

Lemma 5 it follows that u; € X.

For a maximum matching M of G, we denote by 5M the directed graph
obtained from G by directing the edges of M from V to U, and the other

edges from U to V. We use G u to operate with the M -alternating paths of

G. Note that the last are just the directed paths of G u-Now we present an
algorithm providing the least maximum independent set containing the
given set of vertices R € U U V, if there is one, and otherwise reporting
that no maximum independent set contains R, given a maximum
matching.

Algorithm A

Input:  a bipartite graph G = (U, V, E), a maximum matching M of G,
aset of vertices RS UUV.

Output: if R is contained in some maximum independent set of G, then
the least one of them, otherwise, a message indicating that no
maximum independent set of G contains R.

Step 1. Denote by W the set of vertices unmatched by M.

Step 2. ConstmctaM and find all directed paths starting at Wy U Ry;denote by

F the set of their vertices.
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Step 3. Denote by F the complement of F.

Step 4. If Wy, U Ry & Fy, then report that no maximum independent set of G
contains R and exit.

Step 5. Provide Fy; U Fy, as the least maximum independent set of G containing
R.

Now we show that this algorithm is correct.

Lemma 7.The Algorithm Ais correct, and it works in time O(n +
m), where n is the number of vertices and m is the number of edges of
the input bipartite graph.

Proof. The claim regarding complexity is obvious, as the Step 2 can
be implemented via a traversal over G u» which takes O(n + m) time, and
the other steps can be implemented by a lookup over the vertices of G.
Now we prove that the algorithm is correct. As it follows from the
corollary of

Lemma 5, after Step 1 it holds that W is contained in all maximum
independent sets ofG, so if there is one containing R, then it also
contains Wy. Obviously, after Step 2 it holds that F;; and F, are
respectively the even and the odd vertices of the M-alternating paths
starting at Wy; U Ry;. Observe that after Step 3, by denotation of F, we
have that (i) no edge connects a vertex of F; with a vertex of Fy, so
Fy U F, is an independent set, and Fy; U Fy, is a vertex cover; (ii) no edge
of M connects a vertex of F, with a vertex of Fy; (iii) Wy € Fy, so each
vertex of Fy; is matched by some edge of M. If W;, & F,, then there is an
edge between F; and Wy, so, as it follows from the corollary of

Lemma 5, no maximum independent set contains Fj, and as it
follows from

Lemma 6, no maximum independent set contains Ry, therefore no
maximum independent set contains R, as the algorithm reports at Step 4
in this case. Otherwise, if W}, € Fy,, then each vertex of F,, is matched by
some edge of M, so referring to (ii) and (iii), we get that |[M| = |F, U
Fy|, further referring to (i) and Konig’s theorem, we get that F; U Fy, is a
maximum independent set, and moreover, referring to

Lemma 6 and the construction of F, we get that F; U Fy, is the least
maximum independent set containing Ry. The last means that Fy, is the
union of the V-parts of all maximum independent sets containing R, so
if R, € F,, then no maximum independent set contains R = Ry U Ry, as
the algorithm reports at Step 4 in this case. Otherwise, if R, € F,, then
obviously Fy U F}, is the least maximum independent set containing R,
which the algorithm provides at Step 5.

Corollary.ln G,the union of all sets of vertices unmatched by some
maximum matching coincides with the intersection of all maximum
independent sets.
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2.3. The join-irreducible maximum independent sets
algorithm.As it follows from

Lemma 4, the join-irreducible maximum independent sets of G are
Xu {Xu lue Xy \ X U}, where X, is the least maximum independent set

containing u. For any maximum matchingM of G it holds thatX is the
least maximum independent set containing a vertex unmatched by M, so
one can obtain a maximum matching, execute Algorithm A for each
vertex u € U, thus obtaining the join-irreducible maximum independent
sets. Note that such approach may obtain the same join-irreducible
maximum independent set twice, and that it doesn’t indicate the partial
order between them. Next we provide an algorithm which doesn’t have
these disadvantages.For simplicity we assume that G is connected.

Let M be a maximum matching of G, and let W denote the set of
vertices unmatched by M. Denote by H the set of strong components of

5M. Obviously someL € H containsWyand someR € H containsWy,. Let

< denote the partial order over H'induced by the arcs of 51\4 between its
strong components, so for a pair of strong components =< indicates
whether there is a path of 51\4 from second to the first.It can be checked
that L and R are correspondingly the bottom and the top of (, <).It also
can be checked that H, as well as L and R, doesn’t depend on M, and
that (#£,<) except L and R, corresponds to the Dulmage-Mendelsohn
decomposition [2] of G. Now let H € H \ {L, R}be a strong component,
and let H* be the union of all strong components preceding or equal to H.

Lemma 8.For a vertex u € Hy it holds thatH}; U H;, is the least
maximum independent set containing u.

Proof. From the definition of H* it follows that in 5Mu is connected
with all vertices in H*, and that it is not connected with any vertex in H*,
so the proof immediately follows from Algorithm A and Lemma 7.
Finally we provide the algorithm obtaining the partially ordered set of the
join-irreducible maximum independent sets of the given bipartite graph.
Algorithm B
Input:  a bipartite graph G = (U, V, E).

Output: the partially ordered set of the join-irreducible maximum
independent sets of G.

Step 1. Obtain a maximum matching M of G.

Step 2. Construct 5M.

Step 3. Construct (#, <), and indicate L and R.

Step 4. Denote X, := Ly U Ly, and provide it as the bottom join-irreducible

maximum independent set.

Step 5. Iterate{ \ {L, R}in a non-decreasing order, and for each H in it do Step

6.
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Step 6. Denote Xy, := Hpj; U H_‘; and provide it as thejoin-irreducible maximum
independent set succeeding all already provided X,s-s, such that H' < H.
Now we show that this algorithm is correct.

Lemma 9.The Algorithm B is correct, and it works in time
O(t(n, m)), where n is the number of vertices andm is the number of
edges of the input bipartite graph, and t(n,m) is the complexity of an
algorithm finding a maximum matching of the given bipartite graph.

Proof. The claim regarding complexity is obvious, as the strong
components can be obtained in linear time [2]. Next, from

Lemma 4 and

Lemma 8 it follows that Algorithm B provides all the join-
irreducible maximum independent set of G, and from the definitions of
(X,Vv,A) and (7€, <) it follows that at Step 6, if H' < H, then it holds
Xy < Xy. Thus the lemma is proved.

3. Conclusion.We have studied the underlying structure of
maximum independent sets of a bipartite graph and we have shown that it
is a distributive lattice with respect to join and meet operations defined
by (1) and (2). The join-irreducible maximum independent sets describe
the entire set of the maximum independent sets, in sense, that each
maximum independent set is uniquely represented by an irreducible join
of some of the join-irreducible maximum independent sets. This faced
allows to view the Maximum independent sets generation problem in the
aspect of obtaining the join-irreducible maximum independent sets rather
than reporting all the maximum independent sets. Algorithm B obtains
them in time needed to obtain just one maximum independent set.
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It is shown that the set of all maximum independent sets of bipartite graph is a
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join-irreducible maximum independent sets. Also an algorithm providing these sets is
presented, the complexity of which doesn’t exceed the complexity of the best algorithm
providing just one maximum independent set.

45



4. &. Uhtwuyywu

Eplynpuwhgpubhpnnpuupuhdwjutjujupuqinipnibntphpw
qunipjuudwuhl

8nyg £ wpymd, np Epyynnuwuh qpubh dwpuhdw)] wiljup puqunipinmiutph
puqUmipmip  pupfiwlub judup k- pusp poygp Eownwihu Eplyynndwih - gpuph
dwpuhdw) whjwp puqunipiniiubph ghkubpugdwt punhpp nhwnk] npnpwhnpk tnp
wuyklinmy, uwyh £ quib; ns pk popnp, wy dhugb dhudnpludp whpunungpbih
dwpuhtw] wijwp puqUmpnibibpp: Lub tkpluyugdmd b wyn puqUnipniubpp
wpwdwnpnn wignphpd, nph pupnmpeniip wykht sk, pwt dhuyt by dwpuhdug
wtjupu puqunipinit npudwnpnn jwjugny wignphpdh pupnniemnibp:

B. MuHacsH

O MHO’KecTBe BceX MaAKCUMAJIbHBIX He3aBHCMMbIX MHOKECTB
ABY/0JILHOTO Tpada

HoxasaHo, YTO MHOXECCTBO BCEX MaKCHMaJIbHBIX HE3aBUCUMBIX MHOXCCTB
JABYHOOJIbHOI'O rpa(ba €CTh Z[I/ICTpI/I6yTI/IBHa$[ peuieTKa, 4TO IHO3BOJEKICT pacCMaTpuBaThb
3aJa4y reHepali MAaKCHUMAJIbHbIX HE3aBUCHUMbBLIX MHOXKECTB JABYAOJIbHOT'O rpa(ba B
HCKOTOPOM HOBOM acCIICKTE, a HMCHHO, HaWTH He BCC, a TOJBKO HEPA3JIO)KHMBbIC B
06”I)CZ[I/IHCHI/Ie MaKCHMaJibHbI€ HE3aBHCHMbIC MHOXeCTBA. Taxxke MPUBEACH aJIrOPUTM,
HpeZ[OCTaBJISI}OHII/Iﬁ 9TH MHOXECTBA, CJIOXHOCTH KOTOpPOro HE OOJIbIIIC CIIOKHOCTH
HaWIy4lIero aJropurMma, NpeaOCTaBIAIOUICT O TOJIbKO OJHO MaKCHUMaAJIbHOC
HE3aBUCUM O€ MHOXECTBO.
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