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In this paper it is shown that the set of all maximum independent sets 

of bipartite graph is a distributive lattice, which allows to view the 
problem ofgenerating the maximum independent sets of bipartite graph in 
a new aspect, namely, to find not all, but only the join-irreducible 
maximum independent sets. Also an algorithmproviding these sets is 
presented, the complexity of which doesn’t exceed the complexity of the 
best algorithm providing just one maximum independent set. 

1. Introduction.In this section we present the required preliminaries 
that can be found e.g. at [1] and [2].An independent set of a graphܩ is a 
set of its vertices no two of which are adjacent. Sets with the maximum 
cardinality are maximum independent sets of ܩ,and their cardinality is 
denoted by (ܩ)ߙ. The Maximum independent set problem is to find a 
maximum independent set of the given graph, whilethe Maximum 
independent sets generation problem is to report all maximum 
independent sets of the given graph.A vertex cover of ܩ is a set of its 
vertices incident to all its edges. Note that the complement of a vertex 
cover is an independent setand vice-versa, so the complements of 
themaximum independent sets are the vertex coversofthe minimal 
cardinality. These vertex covers are theminimum vertex covers of ܩ, and 
theircardinality is denoted by ߬(ܩ). The Minimum vertex cover problem 
and the Minimum vertex covers generation problem are defined like the 
ones for maximum independent set, and obviously they are equivalent 
respectively. A matching of ܩ is a set of its edges no two of which are 
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incident. Sets of maximal cardinality are the maximum matchings of ܩ, 
and their cardinality is denoted by (ܩ)ߥ. It can be observed that if ܯ is a 
matching of ܩ and ܥ is a vertex cover of ܩ, then each edge of ܯ is 
covered by a separate vertex of ܥ, so it holds(ܩ)ߥ ≤  The .(ܩ)߬
Maximum matching problem is to find a maximum matching of the given 
graph, while the Maximum matchings generation problem is to report all 
maximum matchings of the given graph.In general case the Maximum 
independent set problem and the Minimum vertex cover problem are NP-
complete, while the Maximum matching problem is solvable in 
polynomial time. Within the study of these problems, the study of the 
special case of bipartite graphs is of crucial importance. König’s theorem 
states, that for bipartite graphs it holds (ܩ)ߥ =  ,It can be checked .(ܩ)߬
that this formulation is equivalent to a notion that no maximum matching 
has an edge connecting vertices of the same minimum vertex cover. This 
yields to the fact that for bipartite graphs given a maximum matching, 
one can construct a vertex cover in linear time, and vice-versa, which, in 
its turn, makes the Maximum matching problem, the Minimum vertex 
cover problem and the Maximum independent set problem equivalent to 
each other for bipartite graphs. The known algorithms solving the last 
two problems find a maximum matching first, and then obtain a 
minimum vertex cover or a maximum independent set. In domain of that 
algorithms the concept of an augmenting path is a key concept. For a 
matching ܯ of a (not necessarily bipartite) graph ܩ path ܲ is calledܯ-
alternating, if its edges are alternatingly out ofand inside theܯ; ܲ is 
called ܯ-augmenting, if it isܯ-alternatingand it starts and ends at 
vertices unmatched by ܯ. It can be observed, that if ܲ is an ܯ-
augmenting path, then ܯΔܲ(here Δ denotes the symmetric difference of 
two sets) is a matching of cardinality |ܯ| + 1.Berge’s theorem states that 
a matching is maximum if and only if there are no augmenting paths with 
respect to that matching. Thence many known algorithms construct a 
maximum matching through the searchof augmenting paths. Here is a 
survey on algorithms solving the Maximum matching problem for the 
given bipartite graphwith ݊ vertices and ݉ edges. 

1 O(݊݉) Hungarian method 1955 
2 O൫√݊݉൯ Hopcroft-Karp algorithm 1971 
3 O(݊ଶ.ଷ log݊) Matrices based algorithm 1981 

4 O൫݊ଵ.ହඥ ୪୭ ⁄ ൯ Push-reliable flow based 
algorithm 1991 

5 O ቀ(2 − log݉)√݊	݉ቁ Graphs compressed 
representation based algorithm 1991 
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1.1. Generation problems.As it is mentioned above, the Maximum 
matching problem is equivalent to the Maximumindependent set problem 
for bipartite graphs, since there is a linear time constructive 
correspondence between the maximum matchings and the maximum 
independent sets of a bipartite graph. However, various maximum 
matchings correspond to the same minimum vertex cover, and the 
generation problems of matching and vertex cover are not known to be 
equivalent.It makes sense to consider the notion of complexity of an 
algorithm solving a generation problem carefully, as in these problems 
the size of output is usually in order higher than the size of the input. 
Obviously, each such algorithm requires at least as much time as it is 
needed to obtain one output, plus the time needed to report the whole 
output. There is an algorithm [2], that given a maximum matching, 
enumerates all maximum matchings spending just linear time for each of 
them, so obvious is an algorithm solving the Maximum matchings 
generation problemfor a bipartite graph with ݊ vertices and ݉ edges in 
O(ݐ(݉, ݊) + ,݉)ݐ time, where (݁ݖ݅ݏ	ݐݑݐݑ ݊) is the time needed to 
obtain a maximum matching at the beginning. For the Maximum 
independent sets generation problem there is anO(ݐ(݉, ݊) +
 algorithm [4] (note that the output sizes are not the same in(݁ݖ݅ݏ	ݐݑݐݑ
last two bounds), whichobviouslyis asymptotically the best, if it is 
required to provide all the maximum independent sets one by one. 
However, it might not be the case if there are better ways to provide the 
entire set of all maximum independent sets rather than separately 
providing each element of it. Next we show that actually there is such 
way, and present an algorithm providing the set of all maximum 
independent sets in that way in time O൫ݐ(݉, ݊)൯. 

2. The lattice of maximum independent sets.Here we refer to some 
basic properties of lattices which can be found e.g. at [3]. A lattice is a 
partially ordered set in which any two elements have unique supremum, 
which is called join, and unique infimum, which is called meet. A lattice 
can also be defined as an abstract algebra with join and meet operations 
which are commutative, associative and absorptive. If these operations 
are also distributive, then the lattice is called distributive.A distributive 
lattice can also be defined as a topological space, where the union and 
intersection of the sets correspond to the join and meet operations of the 
lattice elements.A join-irreducible element of a lattice is one that is not 
equal to a join of elements all other than itself. As it follows from 
Birkhoff's representation theorem, a finite distributive lattice is 
determined by its join-irreducible elements, in sense, that its each 
element is uniquely represented as an irreducible join of some of its join-
irreducible elements. In this section we show that the set of all maximum 



40 
 

independent sets of bipartite graph forms a distributive lattice with 
respect to some simple set theoretic operations, and show how to 
construct the join-irreducible elements of that lattice. 

2.1. The lattice.Let ܩ = (ܷ, ܸ,  be a bipartite graph. For a set of (ܧ
vertices ܹ ⊆ ܷ ∪ ܸ we will denote ܹ ≔ܹ ∩ܷ and ܹ ≔ܹ ∩ܸ. 
Let ܺ and ܻ be two maximum independent sets of ܩ, and let ࣲ denote 
the set of all maximum independent sets of ܩ, so ܺ, ܻ ∈ ࣲ. We define 
ܺ ∨ ܻ and ܺ ∧ ܻ as follows: 
 ܺ ∨ ܻ ≔ (ܺ ∪ ܻ) ∪ (ܺ ∩ ܻ), 

(1) 

 ܺ ∧ ܻ ≔ (ܺ ∩ ܻ) ∪ (ܺ ∪ ܻ). 
(2) 

It is easy to check that ܺ ∨ ܻ and ܺ ∧ ܻ are independent sets of ܩ. 
Moreover, they are maximum independent sets. As ܺ and ܻ are 
maximum independent sets, we have |ܺ| = |ܻ| = ܺ and as ,(ܩ)ߙ ∨ ܻ 
and ܺ ∧ ܻ are independent sets, we have |ܺ ∨ ܻ| ≤ ܺ| and (ܩ)ߙ ∧ ܻ| ≤
 Further, note, that .(ܩ)ߙ

|ܺ ∨ ܻ| + |ܺ ∧ ܻ| = |(ܺ ∨ ܻ) ∪ (ܺ ∧ ܻ)| + |(ܺ ∨ ܻ) ∩ (ܺ ∧ ܻ)| =
|ܺ ∪ ܻ| + |ܺ ∩ ܻ| = |ܺ| + |ܺ| =  ,(ܩ)ߙ2

so we get |ܺ ∨ ܻ| = |ܺ ∧ ܻ| =  Thus (1) and (2) define two binary .(ܩ)ߙ
operations over the set of maximum independent sets of ܩ, that are 
∨	∶ ࣲ × ࣲ → ࣲ and ∧	∶ ࣲ × ࣲ → ࣲ. It holds the following. 

Lemma 1.The triple (ࣲ,∨,∧) is a distributive lattice. 
Proof. Indeed, from (1)and (2) it follows that the set family {ܺ ∣

ܺ ∈ ࣲ} is closed towards the set union and intersection operations, and 
thus forms a distributive lattice with respect to them. Further, there is an 
obvious isomorphism between this lattice and (ࣲ,∨,∧), so the lemma is 
proved. 
Consider the partial order induced in (ࣲ,∨,∧). By definition, for ܺ, ܻ ∈
ࣲ we have ܺ ≼ ܻ if and only if ܺ = ܺ ∧ ܻ (which in its turn is the case 
if and only if ܻ = ܺ ∨ ܻ). From (1) and (2) it follows that it is the case if 
and only if ܺ ⊆ ܻ (which in its turn is the case if and only if ܺ ⊇ ܻ). 
We denote by ෘܺ the top of (ࣲ,∨,∧), that is ෘܺ ≔ ⋁ ܺ∈ࣲ . Note that 
from(1)it follows, that ෘܺ is the ܷ-part of the union of all maximum 
independent sets of ܩ, and ෘܺ is the ܸ-part of the intersection of all 
maximum independent sets of ܩ. Obviously, also the dual claim holdsfor 
the bottom of (ࣲ,∨,∧), which is ܺ ≔ ⋀ ܺ∈ࣲ . As it is mentioned above 
(ࣲ,∨,∧) is determined by its join-irreducible elements. As ܺ is be 
bottom, then it is one of them. Next we indicate the others. Recall, that 
(ࣲ,∨,∧) is naturally isomorphic to the finite topology(ࣲ ,∪,∩), where 
ࣲ ≔ {ܺ ∣ ܺ ∈ ࣲ}. The non-bottom join-irreducible elements of a 
finite topology are the closures of its points (the closure of a point is the 
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least set containing it).So the closure of ݑ ∈ ෘܺ ∖ ܺ is the least set of 
(ࣲ ,∪,∩) containing ݑ, andobviously the isomorphic image of that set in 
(ࣲ,∨,∧) is the least maximum independent set of ܩ containing ݑ. We call 
that independent set the closure maximum independent set of vertex ݑ. 
Thus the non-bottom join-irreducible elements of (ࣲ,∨,∧) are the closure 
maximum independent sets of vertices ݑ ∈ ෘܺ ∖ ܺ. The next two 
lemmas form this claim, and their proof basically explainsthe proof of the 
corresponding claim for finite topologies to the terms of lattice(ࣲ,∨,∧). 

Lemma 2.In ܩ, the closure maximum independent set of each vertex 
ݑ ∈ ෘܺ ∖ ܺ is join-irreducible. 

Proof. Let ܺ be the closure maximum independent set ofݑ, and let 
ܺ = ܻ ∨ ܼ for some ܻ, ܼ ∈ ࣲ. Sinceݑ ∈ ܺ, then from (1) it follows, that 
ݑ ∈ ܻ or ݑ ∈ ܼ, and as ܺ is the least maximum independent set 
containing ݑ, then ܺ ≼ ܻ or ܺ ≼ ܼ. On the other hand, since ܺ = ܻ ∨ ܼ, 
we have ܺ ≽ ܻ and ܺ ≽ ܼ. Thus we obtain that ܺ = ܻ or ܺ = ܼ, which 
means that ܺ is join-irreducible. 

Lemma 3.In ܩ, if ܺ is a join-irreducible maximum independent set, 
thenthe closure maximum independent set of each vertexݑ ∈ ܺ  is the ܺ. 

Proof. Let for vertices ݑ ∈ ܺ, ܺ௨  denote the closure maximum 
independent set of ݑ. Observe, that from (1) it follows, that ⋁ ܺ௨௨∈ೆ ≽
ܺ. On the other hand, for each ݑ ∈ ܺ, sinceܺ௨ is the least maximum 
independent set containing ݑ, then it holds ܺ௨ ≼ ܺ for all ݑ ∈ ܺ , which 
means that ⋁ ܺ௨௨∈ೆ ≼ ܺ. Thus we obtain ⋁ ܺ௨௨∈ೆ = ܺ. Since ܺ is 
join-irreducible, then for some ݑ ∈ ܺ  it holds ܺ = ܺ௨. 

Lemma 4.The join-irreducible maximum independent sets of ܩ are 
ܺ and the closure maximum independent sets of vertices ݑ ∈ ෘܺ ∖ ܺ. 

Proof. Immediately follows from Lemma 2 and  
Lemma 3. 

In this section we have described the set of maximum independent sets of 
a bipartite graph, and in the next two sections we will show how to 
maintain that set. 

2.2. The least maximum independent set algorithm.As it follows 
from 

Lemma 4, in order to construct a join-irreducible element of 
(ࣲ,∨,∧), one has to construct the least maximum independent set 
containing some given vertex of ܩ. Next we discuss a wider problem of 
finding the least maximum independent set containing the given set of 
vertices ܴ ⊆ ܷ ∪ ܸ, if there is one. To do it we first prove some 
properties. 
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Lemma 5.In ܩ, if ܺ is a maximum independent set and ܯ is a 
maximum matching, then each edge of ܯ is incident to exactly one vertex 
out of ܺ, and there are no other vertexes out of ܺ. 

Proof. Immediately follows from König’s theorem. Recall, that the 
complement of ܺ, which we denote by തܺ, is a minimum vertex cover of 
 is incident to at least one vertex തܺ. But it is incident ܯ so each edge of ,ܩ
to exactly one vertex of തܺ, and there are no other vertices of തܺ, as 
König’s theorem states that | തܺ| =  .|ܯ|

Corollary.In ܩ, the union of all sets of vertices unmatched by some 
maximum matching iscontained in the intersection of all maximum 
independent sets. 

Proof. Indeed. If ܺ is some maximum independent set, and ݑ ∈ ܷ is 
some vertex not incident to some maximum matching ܯ, then it is also 
not out of ܺ, since, as it follows from the lemma, all vertices out of ܺ are 
incident to an edge in ܯ. Thus ݑ ∈ ܺ. 

Lemma 6.In ܩ, if a vertex ݑ ∈ ܷ is contained in some maximum 
independent set ܺ, then for any maximum matching ܯ the endpoint of 
any ܯ-alternating path of even length starting at ݑ is also contained in 
ܺ. 

Proof. Let ܯ be some maximum matching. Note that it is sufficient 
to prove the lemma only for an ܯ-alternating path of length two, that is 
for a path ݒݑଵݑଵ, where (ݑ, (ଵݒ ∈ ,ଵݑ) and ܧ (ଵݒ ∈  and this case it ,ܯ
obvious. Indeed, as ܺ is an independent set, then ݒଵ ∉ ܺ, and as 
,ଵݑ) (ଵݒ ∈   then from ,ܯ

Lemma 5 it follows that ݑଵ ∈ ܺ. 
For a maximum matching ܯ of ܩ, we denote by ⃗ܩெ the directed graph 
obtained from ܩ by directing the edges of ܯ from ܸ to ܷ, and the other 
edges from ܷ to ܸ. We use ⃗ܩெ to operate with the ܯ-alternating paths of 
 ெ.Now we present anܩ⃗ Note that the last are just the directed paths of .ܩ
algorithm providing the least maximum independent set containing the 
given set of vertices ܴ ⊆ ܷ ∪ ܸ, if there is one, and otherwise reporting 
that no maximum independent set contains ܴ, given a maximum 
matching. 
Algorithm A 
Input: a bipartite graph ܩ = (ܷ, ܸ,  ,ܩ of ܯ a maximum matching ,(ܧ

a set of vertices ܴ ⊆ ܷ ∪ ܸ. 
Output:
  

if ܴ is contained in some maximum independent set of ܩ, then 
the least one of them, otherwise, a message indicating that no 
maximum independent set of ܩ contains ܴ. 

Step 1. Denote by ܹ the set of vertices unmatched by ܯ. 
Step 2. Construct⃗ܩெ and find all directed paths starting at ܹ ∪ ܴ;denote by 
 .the set of their vertices ܨ
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Step 3. Denote by ܨത the complement of ܨ. 
Step 4. If ܹ ∪ ܴ ⊈ തܨ , then report that no maximum independent set of ܩ 
contains ܴ and exit. 

Step 5. Provide ܨ ∪ തܨ  as the least maximum independent set of ܩ containing 
ܴ. 

Now we show that this algorithm is correct. 
Lemma 7.The Algorithm Ais correct, and it works in time ܱ(݊ +

݉), where ݊ is the number of vertices and ݉ is the number of edges of 
the input bipartite graph. 

Proof. The claim regarding complexity is obvious, as the Step 2 can 
be implemented via a traversal over ⃗ܩெ, which takes O(݊ +݉) time, and 
the other steps can be implemented by a lookup over the vertices of ܩ. 
Now we prove that the algorithm is correct. As it follows from the 
corollary of  

Lemma 5, after Step 1 it holds that ܹ is contained in all maximum 
independent sets ofܩ, so if there is one containing ܴ, then it also 
contains ܹ. Obviously, after Step 2 it holds that ܨ and ܨ are 
respectively the even and the odd vertices of the ܯ-alternating paths 
starting at ܹ ∪ ܴ. Observe that after Step 3, by denotation of ܨ, we 
have that (i) no edge connects a vertex of ܨ with a vertex of ܨത, so 
ܨ ∪ തܨ ത is an independent set, andܨ ∪   is a vertex cover; (ii) no edgeܨ
of ܯ connects a vertex of ܨ with a vertex of ܨ; (iii) ܹ ⊆  , so eachܨ
vertex of ܨത is matched by some edge of ܯ. If ܹ ⊈  ത, then there is anܨ
edge between ܨ and ܹ , so, as it follows from the corollary of  

Lemma 5, no maximum independent set contains ܨ, and as it 
follows from  

Lemma 6, no maximum independent set contains ܴ, therefore no 
maximum independent set contains ܴ, as the algorithm reports at Step 4 
in this case. Otherwise, if ܹ ⊆   is matched byܨ ത, then each vertex ofܨ
some edge of ܯ, so referring to (ii) and (iii), we get that |ܯ| = തܨ| ∪
ܨ |, further referring to (i) and König’s theorem, we get thatܨ ∪  ത is aܨ
maximum independent set, and moreover, referring to  

Lemma 6 and the construction of ܨ, we get that ܨ ∪  ത is the leastܨ
maximum independent set containing ܴ. The last means that ܨ is the 
union of the ܸ-parts of all maximum independent sets containing ܴ , so 
if ܴ ⊈ തܨ , then no maximum independent set contains ܴ = ܴ ∪ ܴ , as 
the algorithm reports at Step 4 in this case. Otherwise, if ܴ ⊆  ത, thenܨ
obviously ܨ ∪  ,ܴ  is the least maximum independent set containingܨ
which the algorithm provides at Step 5. 

Corollary.In ܩ,the union of all sets of vertices unmatched by some 
maximum matching coincides with the intersection of all maximum 
independent sets. 
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2.3. The join-irreducible maximum independent sets 
algorithm.As it follows from 

Lemma 4, the join-irreducible maximum independent sets of ܩ are 
ܺ ∪ ൛ܺ௨ ∣ ݑ ∈ ෘܺ ∖ ܺൟ, where ܺ௨  is the least maximum independent set 
containing ݑ. For any maximum matchingܯ of ܩ it holds that ܺ is the 
least maximum independent set containing a vertex unmatched by ܯ, so 
one can obtain a maximum matching, execute Algorithm A for each 
vertex ݑ ∈ ܷ, thus obtaining the join-irreducible maximum independent 
sets. Note that such approach may obtain the same join-irreducible 
maximum independent set twice, and that it doesn’t indicate the partial 
order between them. Next we provide an algorithm which doesn’t have 
these disadvantages.For simplicity we assume that ܩ is connected. 

Let ܯ be a maximum matching of ܩ, and let ܹ denote the set of 
vertices unmatched by ܯ. Denote by ℋ the set of strong components of 
ܮெ. Obviously someܩ⃗ ∈ ℋ contains ܹand someܴ ∈ ℋ contains ܹ. Let 
≼ denote the partial order over ℋinduced by the arcs of ⃗ܩெ between its 
strong components, so for a pair of strong components ≼ indicates 
whether there is a path of ⃗ܩெ from second to the first.It can be checked 
that ܮ and ܴ are correspondingly the bottom and the top of (ℋ, ≼).It also 
can be checked that ℋ, as well as ܮ and ܴ, doesn’t depend on ܯ, and 
that (ℋ,≼) except ܮ and ܴ, corresponds to the Dulmage-Mendelsohn 
decomposition [2] of ܩ. Now let ܪ ∈ ℋ ∖ ,ܮ} ܴ}be a strong component, 
and let ܪ⋆ be the union of all strong components preceding or equal to ܪ. 

Lemma 8.For a vertex ݑ ∈ ܪ  it holds thatܪ⋆ ∪  ⋆തതതത is the leastܪ
maximum independent set containing ݑ. 

Proof. From the definition of ܪ⋆ it follows that in ⃗ܩெݑ is connected 
with all vertices in ܪ⋆, and that it is not connected with any vertex in ܪ⋆തതതത, 
so the proof immediately follows from Algorithm A and Lemma 7. 
Finally we provide the algorithm obtaining the partially ordered set of the 
join-irreducible maximum independent sets of the given bipartite graph. 
Algorithm B 
Input: a bipartite graph ܩ = (ܷ, ܸ,  .(ܧ
Output: the partially ordered set of the join-irreducible maximum 

independent sets of ܩ. 
Step 1. Obtain a maximum matching ܯ of ܩ. 
Step 2. Construct ⃗ܩெ. 
Step 3. Construct (ℋ,≼), and indicate ܮ and ܴ. 
Step 4. Denote ܺ ≔ ܮ ∪  തതത, and provide it as the bottom join-irreducibleܮ
maximum independent set. 

Step 5. Iterateℋ ∖ ,ܮ} ܴ}in a non-decreasing order, and for each ܪ in it do Step 
6. 
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Step 6. Denote ܺு ≔ ⋆ܪ ∪  ⋆തതതത and provide it as thejoin-irreducible maximumܪ
independent set succeeding all already provided ܺுᇲ-s, such that ܪᇱ ≼  .ܪ

Now we show that this algorithm is correct. 
Lemma 9.The Algorithm B is correct, and it works in time 

O൫ݐ(݊,݉)൯, where ݊ is the number of vertices and݉ is the number of 
edges of the input bipartite graph, and ݐ(݊,݉) is the complexity of an 
algorithm finding a maximum matching of the given bipartite graph. 

Proof. The claim regarding complexity is obvious, as the strong 
components can be obtained in linear time [2]. Next, from  

Lemma 4 and  
Lemma 8 it follows that Algorithm B provides all the join-

irreducible maximum independent set of ܩ, and from the definitions of 
(ࣲ,∨,∧) and (ℋ,≼) it follows that at Step 6, if ܪᇱ ≼  then it holds ,ܪ
ܺுᇲ ≼ ܺு. Thus the lemma is proved. 

3. Conclusion.We have studied the underlying structure of 
maximum independent sets of a bipartite graph and we have shown that it 
is a distributive lattice with respect to join and meet operations defined 
by (1) and (2). The join-irreducible maximum independent sets describe 
the entire set of the maximum independent sets, in sense, that each 
maximum independent set is uniquely represented by an irreducible join 
of some of the join-irreducible maximum independent sets. This faced 
allows to view the Maximum independent sets generation problem in the 
aspect of obtaining the join-irreducible maximum independent sets rather 
than reporting all the maximum independent sets. Algorithm B obtains 
them in time needed to obtain just one maximum independent set. 
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Վ. Գ. Մինասյան 

Երկկողմանիգրաֆիբոլորմաքսիմալանկախբազմություններիբա
զմությանմասին 

 
Ցույց է տրվում, որ երկկողմանի գրաֆի մաքսիմալ անկախ բազմությունների 

բազմությունը բաշխական կավար է, ինչը թույլ է տալիս երկկողմանի գրաֆի 
մաքսիմալ անկախ բազմությունների գեներացման խնդիրը դիտել որոշակիորեն նոր 
ասպեկտում, այն է՝ գտնել ոչ թե բոլոր, այլ միայն միավորմամբ անբաղադրելի 
մաքսիմալ անկախ բազմությունները։ Նաև ներկայացվում է այդ բազմությունները 
տրամադրող ալգորիթմ, որի բարդությունը ավելին չէ, քան միայն մեկ մաքսիմալ 
անկախ բազմություն տրամադրող լավագույն ալգորիթմի բարդությունը։ 

 
 

В. Минасян 

О множестве всех максимальных независимых множеств 
двудольного графа 

 
Показано, что множество всех максимальных независимых множеств 

двудольного графа есть дистрибутивная решетка, что позволяет рассматривать 
задачу генерации максимальных независимых множеств двудольного графа в 
некотором новом аспекте, а именно, найти не все, а только неразложимые в 
объединение максимальные независимые множества. Также приведен алгоритм, 
предоставляющий эти множества, сложность которого не больше сложности 
наилучшего алгоритма, предоставляющего только одно максимальное 
независимое множество. 
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