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1. Introduction.

This paper advances the suggested in [1]–[4] difference analysis which is a method for an-

alyzing discrete dynamical systems. This method is based on studying the higher absolute

differences taken from progressive terms of system’s orbit. This is motivated by an observation

[5] that some natural systems (e.g., the visual cortex) process the information contained in

signal’s higher difference structure. A minimal Lie algebra considered in this paper provides

us with the axiomatic basis for difference analysis. The identity x + x ≡ 0, which is a basic

one in the Lie algebras, leads us to some exotic arithmetic, maps, and dynamics. The situation

considered is opposite (in axiomatic sense) to so-called idempotent or tropical analysis [6] where

another exotic identity x+ x ≡ x is postulated.

In next Section 2 the difference analysis is briefly described and a minimal Lie algebra is

defined. In Section 3 we are interested in the topological aspect of the suggested algebra – to

determine the limiting difference orbits (as the order of differences tends to ∞) we involve a

version of the thinness from the probabilistic potential theory. In last Section 4 a difference-shift

transform and Bernoulli maps are studied.

2. Difference analysis and minimal Lie algebra.

2.1. Difference analysis. In difference analysis a given orbit is decomposed into the sign and

magnitude components which are studied independently. The sign component S = (Sm)
∞
m=1



reflects the alternation in monotony (increase/decrease) of higher absolute differences taken

from the successive terms of the orbit. The magnitude (or, height) component H = (H(m))∞m=1,

which consists of these absolute differences, does not depend on Sm.

Let us present some formal definitions. Let x = (x1, x2, . . . , xn, . . .) (0 ≤ xn ≤ 1) be an

infinite numerical sequence – this can be some time series, results of an experiment, or an orbit

of some map. We consider m-th order absolute differences:

H(0)
n = xn, H(m+1)

n = |H(m)
n+1 −H(m)

n | (m ≥ 0, n ≥ 1) (1)

and define m-th difference sequence as H(m) = (H
(m)
n )∞n=1. We also let

Sm = (δ
(m)
1 , δ

(m)
2 , . . . , δ(m)

n , . . .) where δ(m)
n =

{
1, H

(m)
n+1 ≥ H

(m)
n

0, H
(m)
n+1 < H

(m)
n .

(2)

The Sm and H(m) are called m-th S- and H-components of x. Instead of binary sequence in

Eq. (2) one can also deal with the corresponding real numbers Sm = 0.δ
(m)
1 δ

(m)
2 . . . (binary

expansion; the same notation as in (2)). Thus, given time series (orbit) x we define and study

two others, the sign and magnitude series (Sm)
∞
m=1 and (H(m))∞m=1.

The S-component extracts from x = (xn)
∞
n=1 some binary constituents Sm. One can prove

that for arbitrary x the H-component also contains arbitrarily long binary samples. Hence, for

many cases the difference orbits are reduced to a ”minimal” form of binary sequences – namely

with the aim of studying this ”minimal” case a simplified version of the Lie algebra in next

Section is introduced.

2.2. Minimal Lie algebra. The binary operation of taking the absolute difference ξ ⊕ η =

|ξ − η| between two binary variables ξ, η ∈ {0, 1} satisfies the identity ξ ⊕ ξ = 0 postulated in

Lie algebras as well as the group-theoretical axioms (Eq. (3)); generalizing this observation we

consider some minimal abstract Lie algebras.

Let X be an abstract set on which a binary operation denoted [x, y] be defined. It is assumed

that this operation satisfies relations:

[x, [y, z]] = [[x, y], z], [x, y] = [y, x], [x, 0] = x, [x, x] = 0 (3)

that is, G = (X, [, ]) is an abstract commutative group on X. For x ∈ X and binary α ∈ {0, 1}
we define a multiplication: αx = 0 if α = 0 and αx = x if α = 1. Since our main interest is the

last relation in (3) which is a basic one in Lie algebras, we call the group G with assigned on

it binary multiplication αx a minimal Lie algebra.

We extend the binary bracket (3) to n-ary version [x1, . . . , xn]: if for some n ≥ 3 the (n− 1)-

ary bracket is already defined, then we let

[x1, . . . , xn] = [[x1, . . . , xn−1], [x2, . . . , xn]].

As a consequence of the relation [x, x] = 0 in (3) it follows (next Proposition 1) that n-ary

bracket can be expressed by a binary version P of the Pascal triangle of binomial coefficients,

P = (αi,k)i,k where 0 ≤ i ≤ k, k ≥ 1, and αi,k ∈ {0, 1}. The first line (k = 1) of P consists of



a single number 1 denoted as α0,1 or α1,1, and its every k-th line (k ≥ 2) α0,k, α1,k, . . . , αk,k is

determined recurrently: we suppose α0,k = αk,k = 1 and then let

αi,k = αi−1,k−1 ⊕ αi,k−1 (1 ≤ i ≤ k − 1), that is αi,k =

{
0,

(
k
i

)
is even

1,
(
k
i

)
is odd.

Proposition 1. Let x0, . . . , xn ∈ X and zm = [x0, . . . , xm] (0 ≤ m ≤ n). Then it follows:

zn = [α0,nx0, α1,nx1, · · · , αn,nxn], xn = [α0,nz0, α1,nz1, · · · , αn,nzn].

We assume that there is a functional µ,

µ : X \ {0} → R+ such that µ([x0, . . . , xn]) =
n∑

i=0

αi,nµ(xi) (4)

(here, µ(0) is not defined since (4) with equal xi can lead to some contradictions) and assign a

topology on X by defining: if x ̸= 0 then xn → x (xn converges to x as n → ∞) if µ(xn) → µ(x),

and xn → 0 if µ(xn) → 0. Then it follows that G = G(X, [, ], µ) is a topological group. One

can consider the direct products of such algebras (e.g., for the aims of the multidimensional

difference analysis). Let Gi = G(Xi, [, ]i, µi), 1 ≤ i ≤ n, n ≥ 2 be some minimal Lie algebras;

then one can construct such algebra G = G1×· · ·×Gn on cartesian product X = X1×· · ·×Xn

by assuming that [x,y] = ([x1, y1]1, . . . , [xn, yn]n) for x,y ∈ X and that µ : X → Rn is given

by µ = (µ1, . . . , µn).

2.3. Independent random binary processes. We present an example of minimal algebra

defined on the collection X of pairwise independent binary random variables ξ ∈ {0, 1}. For

ξ, η ∈ X we consider a variable ξ ⊕ η (= [ξ, η]), whose distribution of probabilities coincides

with the distribution of the absolute difference |ξ − η|. We assign the probabilities as P (ξ =

λ) = 1
2
(1± (−1)λπ) where λ ∈ {0, 1} and π ∈ (0, 1) and denote π = π(ξ) (to avoid some formal

complications we assumed π ̸= 0, 1). The µ(ξ) = − lnπ(ξ) is a functional of the type (4) (see

next Theorem 1), and hence, we obtain a probabilistic example G = G(X,⊕, µ) of the minimal

algebra.

In the following we consider the absolute differences taken from a given random process

ξ = (ξ1, ξ2, . . . , ξn, . . .) where ξn are independent and take the values 0 and 1 with positive

probabilities – such ξ (but not their difference series) are studied, e.g., in a paper by Marsaglia

[7]. The variables ξn ⊕ ξn+1 also take binary values with some positive probabilities, and the

difference (of order 1) process ξ(1) = (ξ
(1)
1 , ξ

(1)
2 , . . . , ξ

(1)
n , . . .) is defined as independent process

where the distribution of ξ
(1)
n coincides with the distribution of ξn⊕ξn+1. The k-th order (k ≥ 1)

difference process ξ(k) is defined as 1st order difference taken from ξ(k−1). Our assumption that

for every 0 ≤ k ≤ +∞ the process ξ(k) is independent yields that π(ξ
(k)
n ) are determined by

kth line of P:

Theorem 1. For n, k ≥ 1 the following relations are true:

ξ(k)n = [ξn, . . . , ξn+k], ln π([ξn, . . . , ξn+k]) =
∑
0≤i≤k

αi,k lnπ(ξn+i). (5)



3. Fine limits in minimal Lie algebras.

We are interested in the topological aspect of the algebras G = (X, [, ], µ) – we consider the

limits of infinite sequences from X. In potential theory the Wiener criterion and fine sets are

used for studying the limits of potentials (e.g., the Cartan theorem on quasi-continuity of the

Newton potential [8, 9]). Following this, we assign some ”fine” sets (F-sets) in natural series N
and consider fine convergence (F-convergence) and fine limits (F-lim) of difference orbits. We

use potential theory terminology (fine or thin sets, etc) because of formal similarity of next

relation (7) with the Wiener criterion in the probabilistic potential theory [10, 11].

We consider the following binary codes of numbers k ∈ N – it is a vector (s0, s1, . . . , sp−1) with

binary components si ∈ {0, 1} (bits) for which k =
∑p

i=0 si2
i and sp = 1. Let w(k) =

∑p−1
i=0 si

be the number of units (the weight) in the code of k. For e ⊂ N we define

C(e) =
∑
k∈e

w(k) (6)

and call C(e) the capacity of e. For E ⊆ N we denote En = E ∩ {k ∈ N : 2n ≤ k < 2n+1}.

Definition 1. A set E ⊂ N is called a fine set (F-set) if the relation

∞∑
n=1

2−nC(En) < ∞ (7)

holds. An infinite sequence xn ∈ X is called F-convergent to x,

F− lim
n→∞

xn = x, if there is an F−set E such that lim
n→∞
n∈N\E

µ(xn) = µ(x). (8)

The C is an additive measure on subsets of [2n, 2n+1) and C([2n, 2n+1)) = 2n. We consider

the sets Bn(s) = {2n ≤ k < 2n+1 : w(k) ≤ s} where 0 ≤ s ≤ n. Since for some cases

C(Bn(s)) ≤ const.C(∂Bn(s)) (when n is large and s is small; for such cases the C(Bn(s)) can be

substituted by C(∂Bn(s)) which is equal to
(
n
s

)
) what is a characteristic property of classical

capacities (with const. = 1, e.g., [10]), we called C a capacity.

It follows from (6) that the capacity C concerns several notions in information theory. To

demonstrate this we identify a number k ∈ [2n, 2n+1) (the segment of natural numbers, 2n ≤
k < 2n+1) with a vertex (s0, s1, . . . , sn−1) (the binary code of k) of n-dimensional cube [0, 1]n.

If (s0, s1, . . . , sn−1) and (s′0, s
′
1, . . . , s

′
n−1) are the codes of k and k′, then the Hamming distance

between k and k′ is the number of such i for which si ̸= s′i. By Eq. (6) the capacity C of Bn(s) is

equal to the following sum of binomial coefficients: σ(n, s) =
∑s

i=0

(
n
i

)
. The cardinality of Bn(s)

(the Hamming volume) is also equal to σ(n, s); the σ coincides also with some other quantities

in coding theory mentioned in next Proposition (see, e.g., [13] for details and definitions; for

estimates of σ by Shannon function see [14]). In next formulation, VH(e) is the Hamming

volume of e, bH is the Hamming bound from coding theory (the bH(n, s) is an upper bound for

the size of binary s-error corrected codes of length n), and H(x) = x log2 x+(1−x) log2(1−x)

is the Shannon entropy function (it is assumed for its argument in (9) that s/n < 1/2).



Proposition 2. The Bn(s) is a ball of radius s in the Hamming metric (the Hamming ball)

centered at 2n and the following relations

C(Bn(s)) = VH(Bn(s)) = 2n(bH(n, s))
−1 = 2nH(s/n)+o(n) (9)

hold. Particularly, it follows that the union E =
∪∞

n=1 Bn(sn) is an F−set if and only if

∞∑
n=1

(bH(n, sn))
−1 < ∞.

A computation shows that there exists a union of balls E =
∪∞

n=1 Bn(sn) whose radii sn grow

to ∞ and such that E is an F-set. Hence, every such E with upper bounded radii sn is also

an F-set. This explains the reason of our Definition 1 – it is allowed by this Definition that

some small sets E of indices k ∈ N can be neglected when determining the F-limits (cp. Eq.

(8)). For example, if E is a union of balls Bn(sn) whose radii sn ≤ s, then for every k ∈ E the

π(ξ
(k)
n ) (Section 2.3) is a product of lesser than s different π(ξi), what implies that as a rule,

their limit as k growth to ∞ remaining in E, does not exist. E.g., one can refer to identically

distributed ξ – here, π(ξi) ≡ π, 0 < π < 1 and π(ξ
(k)
n ) ≡ π2w(k)+1

(a self-similar structure of the

triangle P yields that the number of units in k-th line of P is equal to 2w(k)+1).

The discussed is similar to metrical statements on covering the classical fine sets by (euclidean

and non-euclidean) balls (e.g., [9]). We formulate another related metrical result from [2, 4].

For x ∈ [0, 1] we consider infinite binary expansions x = 0.x1, x2, . . . and let for k ≥ 2 the Ek be

the collection of such x ∈ [0, 1] for which every segment xi, . . . , xi+k of the expansion contains

both symbols 0 and 1.

Theorem 2. For every k ≥ 2 the Hausdorff dimension D(Ek) of the set Ek satisfies the

following relation:
k∑

n=1

2−nD(Ek) = 1.

For q-adic version of this Theorem, see [2, 4].

Definition 2. Let G = G(X, [, ], µ) be given, x = (x1, x2, . . .), xn ∈ X be infinite sequence,

x
(k)
n = [xn, . . . , xn+k], and x∞

n be F-limit of the sequence x
(k)
n as k → ∞. The x∞ = (x∞

1 , x∞
2 , . . .)

is called the final difference sequence for x.

Thus, it follows from (4) that if for x = (x1, x2, . . .) the x∞ exists, then for every n

F− lim
k→∞

k∑
i=0

αi,kµ(xn+i) = µ(x∞
n ).

E.g., it follows from (5) that for a given random process ξ the differences ξ(k) converge to ξ∞

iff for every n the π(ξ
(k)
n ) is F-convergent to some numbers sn ∈ [0, 1]; then π(ξ∞n ) = sn.

Theorem 3. If ξ is identically distributed binary process (the Bernoulli trials), then ξ∞ is the

symmetric equi-distributed process.



The next Theorem relates to arbitrary G = (X, [, ], µ), usual limits, and ω-sets (cluster sets);

we remind that a set is called a perfect set if it is closed and its every point is also its limiting

point. In applications this Theorem can concern the conservative systems as well as can explain

the emergence of the Cantorian structure in the attractors of dissipative systems (see Theorem

7 for an example):

Theorem 4. Let xn ∈ X be infinite sequence and zn = [x0, . . . , xn]. If µ(xn) = const. > 0,

then ω-set of the sequence µ(zn) is a discrete countable closed set. If µ(xn) is monotone and

decreases to 0, then ω-set of the µ(zn) is a nontrivial perfect set.

4. Application to dynamical systems.

We define a difference-shift transform ([2, 4]) and present some results on so-called Bernoulli

maps. We first consider arbitrary groups G = (X, [, ]) defined by (3) and formulate the following

(the Proposition 4 concerns arbitrary minimal algebras G = (X, [, ], µ):

Definition 3. Let T : X → X be a map. The map T̂ : X → X defined as T̂ x = [x, Tx] is

called algebraically conjugate to T . A map T is called commutative if T T̂ = T̂ T .

Proposition 3. Let T : X → X be commutative. Then for x ∈ X and n ∈ N

[x, Tx, . . . , T nx] = T̂ nx, [x, T̂x, . . . , T̂ nx] = T nx. (10)

Proposition 4. Let T : X → X be commutative and xn = T nx be an orbit. Then if x∞
1 exists,

then for every n ≥ 1 the x∞
n also exists, and the final orbit is: x∞

n = T nx∞
1 .

The algebraic conjugation differs from the topological one: e.g., the Bernoulli shift B (defined

in next Section) is topologically conjugate to so-called tent and 4-logistic maps [12], but B is

not algebraically conjugate to them.

4.1. A difference-shift map. We consider the Bernoulli shift B : x 7→ {2x} (dyadic or

bit-shift map [12, 16]; {.} and [.] denote the fractional and entire parts of a positive number,

a = {a} + [a]) and the difference-shift map M ([2, 4]), both are defined on the segment [0, 1]

(their graphs on Fig. 1 are presented). In binary notation these maps are defined as follows:

B : 0.ω1ω2 . . . 7→ 0.ω2ω3 . . . and M : 0.ω1ω2 . . . 7→ 0.(ω1 ⊕ ω2)(ω2 ⊕ ω3) . . . . (11)

The shift M is the sum of the identical map Ex = x and the shift B with respect to some

exotic arithmetic, M = E†B. This arithmetic is the following: considering binary expansion,

for a = 0.ε1ε2 . . . and b = 0.δ1δ2 . . . we define a†b = 0.(ε1 ⊕ δ1)(ε2 ⊕ δ2) . . . . (12)

Considering binary expansion of natural numbers: c(m) = (ε0, ε1, . . . , εq) where m =
∑q

i=0 εi2
i

and εi ∈ {0, 1}, for a, b ∈ N we define: if c(a) = (ε0, . . . , εn), c(b) = (δ0, . . . , δk), then c(a†b) =
(ε0 ⊕ δ0, . . . , εk ⊕ δk, εk+1, . . . , εn) (we assumed n ≥ k). For a, b ∈ R+ the a†b ∈ R+ is a real

number for which [a†b] = [a]†[b] and {a†b} = {a}†{b}; for example, 5†1 = 4, 5†3 = 6, 6†3 = 5.

It is clear how this arithmetic is extended to arbitrary real numbers from R. This determines

an additive commutative group (R, †) with the arithmetic (12) which is not isomorphic to the
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Figure 1. The ”fractal” letter ”M” ([2, 4]) – the graph of the difference shift M, and

the graph of the Bernoulli shift B. These maps are algebraically conjugate to each

other: [x,Mx] = Bx and [x,Bx] = Mx.

standard additive group (R,+) of real numbers. In next Proposition the group G = ([0, 1], †)
with the arithmetic (12) is considered:

Proposition 5. For the maps B and M the relations B̂ = M , M̂ = B, BM = MB hold,

and hence, they are algebraically conjugate each other and both are commutative: BB̂ = B̂B,

MM̂ = M̂M . In addition, Eq. (10) gives the following identities:

[x,Bx, . . . , Bnx] = Mnx, [x,Mx, . . . ,Mnx] = Bnx. (13)

The Eq. (13) and Birkhoff ergodic theorem (one can prove that the Lebesgue measure on

[0, 1] is invariant measure for B and for M) imply the ”a.e.”-convergence (”almost every”) of

the mean values of difference series H(m) (we denote them H
(m)
B and H

(m)
M ) for these maps:

Proposition 6. There is a positive constant C such that for a.e. x ∈ [0, 1] the relation

lim
n→∞

1

n

n∑
m=0

H
(m)
B (x) = C (=

∫ 1

0

B(x)dx = 1/2)

holds. The same is true for the map M .

Let us consider the topological entropy of the map M . The topological entropy h(T ) of

a map T : [0, 1] → [0, 1] concerns the ability of T to transform a given segment ∆ ⊆ [0, 1]

into a number of smaller ones (for strict definition see, e.g., [15, 17]). Theorem 6 follows from

Theorem 5 and the Bowen lemma on periodic orbits ([17], Ch. 5.4]).

Theorem 5. Let p ≥ 3 and a number 0 < x < 1 be binary-rational,

x = 0.s0s1 . . . sp−1sp00 . . . (s0, s1, . . . sp−1 ∈ {0, 1}, sp = 1, sp+i = 0 for i ≥ 1).

Then the orbit (Mmx)m≥0 is periodic with the period T = 2[log2(p−1)].

Theorem 6. The topological entropy of the map M is positive, h(M) > 0.

The difference orbits of M coincide with its iterates, Sm = H(m) = Mm. As noticed in

Section 2.1, such a situation is quite common, and hence, the shift M is quite universal when

one applies difference analysis. In literature, a universality of the Bernoulli shift B in chaotic

dynamics is also noted [12].



4.2. Bernoulli maps. Let us denote Ω = [0, 1], X = 2Ω and for A,B ∈ X define a bracket

[A,B] = A △ B where △ is the symmetric difference: A △ B = (A \ B)
∪
(B \ A), Then Eq.

(3) is satisfied and hence the group G = (X,△) is determined. We define the multiplication:

0A = ∅ and 1A = A and present the following formula:

[A0, A1, . . . , An] = α0,nA0 △ α1,nA1 △ · · · △ αn,nAn.

Let a positive Borelian measure m on Ω be given, m(Ω) = 1. We consider Bernoulli maps:

a map T : Ω → Ω is called the Bernoulli map (with respect to m) if for every measurable

A ⊆ Ω the relation m(A ∩ TA) = m(A)m(TA) holds. For A ∈ X one can define a random

variable ξA = ξA(x) which takes the value 1 if x ∈ A and 0 if x ∈ AC and whose distribution

of probabilities is: P (ξA = 1) = m(A) and P (ξA = 0) = 1 − m(A). It follows that a map

T : Ω → Ω is a Bernoulli map iff for every A ⊂ Ω of positive m-measure the variables ξA and

ξTA are independent. Then µ(A) = − ln |2m(A) − 1| is of the type (4) (cp. Section 2.3). Let

for a map T and A ⊆ Ω the A∞
T denotes the following fine difference attractor

A∞
T = F− lim

n→∞
[A, TA, . . . , T nA]

and EA(T ) denotes the ω-set of the sequence m(T̂ nA). The next Theorem provides us with

a topological criterion for a measure m on Ω to be an invariant measure for a given Bernoulli

map. It also asserts that it is either A∞
T = Ω or (under an assumption on monotony) A∞

T = ∅
(in both cases – up to a set of zero m-measure):

Theorem 7. Let T be a Bernoulli map on (Ω,m) and A ⊆ Ω be a set of positive m-measure. If

m(T nA) = m(A) for every n, then EA(T ) is a discrete countable closed set and m(A∞
T ) = 1. If

m(T nA) is monotone and decreases to 0 as n growth to ∞, then EA(T ) is a non-trivial perfect

set and m(A∞
T ) = 0.
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À. Þ. Øàõâåðäÿí 
 

Ìèíèìàëüíàÿ àëãåáðà Ëè, òîíêèå ïðåäåëû, è äèíàìè÷åñêèå ñèñòåìû 
 
Ñòàòüÿ êàñàåòñÿ ìåòîäà àíàëèçà äèñêðåòíûõ äèíàìè÷åñêèõ ñèñòåì, îñíîâàííîго íà 
ðàññìîòðåíèè âûñøåé ðàçíîñòíîé ñòðóêòóðû îðáèò ñèñòåìû. Ââîäèòñÿ àáñòðàêòíàÿ 
ìèíèìàëüíàÿ àëãåáðà Ëè, êîòîðàÿ ÿâëÿåòñÿ àêñèîìàòè÷åñêèì áàçèñîì äëÿ òàêîãî 
àíàëèçà. Ðàññìîòðåíû òîíêèå ìíîæåñòâà è ïðåäåëû, îïðåäåëÿåìûå ïîñðåäñòâîì óñëîâèé 
òèïà êðèòåðèÿ Âèíåðà â âåðîÿòíîñòíîé òåîðèè ïîòåíöèàëà. Îáñóæäàþòñÿ ñâÿçè ñ 
òåîðèåé êîäèðîâàíèÿ. Ââåäåíî îòîáðàæåíèå ðàçíîñòíîãî ñäâèãà è ðàññìîòðåíû ñâÿçè 
ñî ñäâèãîì Áåðíóëëè. Ïðèâåäåí òîïîëîãè÷åñêèé êðèòåðèé äëÿ èíâàðèàíòíîñòè ìåðû äëÿ 
çàäàííîãî îòîáðàæåíèÿ Áåðíóëëè è ñôîðìóëèðîâàí ðåçóëüòàò î òîíêèõ àòòðàêòîðàõ 
òàêèõ îòîáðàæåíèé. 
 
 

². Úáõ. Þ³Ñí»ր¹Û³Ý 
 

ÈÇÇ մÇÝÇÙ³É հ³Ýñ³Ñ³ßÇí, նáõñμ ս³ÑÙ³ÝÝ»ñ ¨ դÇÝ³ÙÇÏ հ³Ù³Ï³ñ·»ñ 
 
Հոդվածը վերաբերվում է տարբերությունների անալիզին, որը դիսկրետ դինամիկ 
համակարգերի հետազոտության նոր մեթոդ է: ¸Çï³ñÏíáõÙ ¿ ÈÇÇ ÙÇÝÇÙ³É Ñ³Ýñ³Ñ³ßÇí, áñÁ 
³ùëÇáÙ³ïÇÏ ÑÇÙù է ï³ñμ»ñáõÃÛáõÝÝ»ñÇ ³Ý³ÉÇ½Ç Ñ³Ù³ñ: ¸Çï³ñÏíáõÙ »Ý Ýáõñμ 
μ³½ÙáõÃÛáõÝÝ»ñ, áñáÝù ë³ÑÙ³ÝíáõÙ »Ý Ñ³í³Ý³Ï³Ï³Ý åáï»ÝóÇ³ÉÇ ï»ëáõÃÛ³Ý ìÇÝ»ñÇ 
ïÇåÇ å³ÛÙ³ÝÇ ÙÇçáóáí: øÝÝ³ñÏíáõÙ ¿ Ï³åÁ Ïá¹³íáñÙ³Ý ï»ëáõÃÛ³Ý Ñ»ï: ê³ÑÙ³ÝíáõÙ ¿ 
ï³ñμ»ñ³Ï³Ý ³ñï³å³ïÏ»ñáõÙ ¨ áõëáõÙÝ³ëÇñíáõÙ ¿ Ýñ³ Ï³åÁ ´»ñÝáõÉÇÇ ¹Ç³¹ÇÏ 
³ñï³å³ïÏ»ñÙ³Ý Ñ»ï: îñíáõÙ ¿ ã³÷Ç ÇÝí³ñÇ³ÝïáõÃÛ³Ý ïáåáÉá·Ç³Ï³Ý å³ÛÙ³Ý ¨ 
μ»ñíáõÙ է Ýáõñμ ³ïïñ³ÏïáñÝ»ñÇն  í»ñ³μ»ñíáÕ թեորեմ: 
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