MATHEMATICS

2000 Mathematics Subject Classification. 11U10, 22E60, 31C40, 37C70, 37E05, 37M10.

A. Yu. Shahverdian

Minimal Lie Algebra, Fine limits, and Dynamical Systems

(Submitted by academician V. S. Zakaryan 14/XI 2011)

Key words: discrete dynamical systems, Lie algebras, fine sets, fine attractors

1. Introduction.

This paper advances the suggested in [1]-[4] difference analysis which is a method for an-
alyzing discrete dynamical systems. This method is based on studying the higher absolute
differences taken from progressive terms of system’s orbit. This is motivated by an observation
[5] that some natural systems (e.g., the visual cortex) process the information contained in
signal’s higher difference structure. A minimal Lie algebra considered in this paper provides
us with the axiomatic basis for difference analysis. The identity x + x = 0, which is a basic
one in the Lie algebras, leads us to some exotic arithmetic, maps, and dynamics. The situation
considered is opposite (in axiomatic sense) to so-called idempotent or tropical analysis [6] where
another exotic identity z + x = x is postulated.

In next Section 2 the difference analysis is briefly described and a minimal Lie algebra is
defined. In Section 3 we are interested in the topological aspect of the suggested algebra — to
determine the limiting difference orbits (as the order of differences tends to co) we involve a
version of the thinness from the probabilistic potential theory. In last Section 4 a difference-shift

transform and Bernoulli maps are studied.

2. Difference analysis and minimal Lie algebra.

2.1. Difference analysis. In difference analysis a given orbit is decomposed into the sign and

magnitude components which are studied independently. The sign component S = (5,,)%_,



reflects the alternation in monotony (increase/decrease) of higher absolute differences taken
from the successive terms of the orbit. The magnitude (or, height) component H = (H™))>_,
which consists of these absolute differences, does not depend on S,,.

Let us present some formal definitions. Let x = (x1,22,...,2p,...) (0 < 2, < 1) be an
infinite numerical sequence — this can be some time series, results of an experiment, or an orbit

of some map. We consider m-th order absolute differences:

2O =z, H™Y = |H") - H™|  (m>0,n>1) (1)

n n+l = 4in
and define m-th difference sequence as H(™) = (H,g,m));’f:l. We also let

1 > H

0, H) < H™. @

n

Sm = (6§m)7 (Sém), o 75(m)7 - ) where 67(1m) _ {

The S,, and H™ are called m-th S- and H-components of x. Instead of binary sequence in
Eq. (2) one can also deal with the corresponding real numbers S, = O.é%m)éém) ... (binary
expansion; the same notation as in (2)). Thus, given time series (orbit) x we define and study
two others, the sign and magnitude series (.S,,)%°_, and (H™)>_, .

The S-component extracts from x = (z,)2, some binary constituents S,,. One can prove
that for arbitrary x the H-component also contains arbitrarily long binary samples. Hence, for
many cases the difference orbits are reduced to a "minimal” form of binary sequences — namely
with the aim of studying this "minimal” case a simplified version of the Lie algebra in next

Section is introduced.

2.2. Minimal Lie algebra. The binary operation of taking the absolute difference £ & n =
|¢ — n| between two binary variables &, 1 € {0, 1} satisfies the identity £ ® £ = 0 postulated in
Lie algebras as well as the group-theoretical axioms (Eq. (3)); generalizing this observation we
consider some minimal abstract Lie algebras.

Let X be an abstract set on which a binary operation denoted [z, y] be defined. It is assumed

that this operation satisfies relations:

[l‘7 [y,Z]] = [[m,y],z], [ZE,y] = [y,x], [:L‘,O] =T, [ZL‘,JZ] =0 (3)

that is, G = (X, [,]) is an abstract commutative group on X. For z € X and binary o € {0,1}
we define a multiplication: ax = 0 if @« = 0 and ax = x if @ = 1. Since our main interest is the
last relation in (3) which is a basic one in Lie algebras, we call the group G with assigned on
it binary multiplication az a minimal Lie algebra.

We extend the binary bracket (3) to n-ary version [zy, ..., z,]: if for some n > 3 the (n —1)-

ary bracket is already defined, then we let

(21, 2] = [[21, - Tnca], [T2, - 2]

As a consequence of the relation [x,z] = 0 in (3) it follows (next Proposition 1) that n-ary
bracket can be expressed by a binary version P of the Pascal triangle of binomial coefficients,
P = (aig)ir where 0 < i <k, k> 1, and a; € {0,1}. The first line (k = 1) of P consists of



a single number 1 denoted as ag; or oy 1, and its every k-th line (k > 2) app, 014, ..., Qgp 1S

determined recurrently: we suppose oy = oy = 1 and then let

0, (]f) is even

Qg = Q1 k-1 D Q| ]_SZSI{?—]., that is Q| =
* b w1 ) * {1, ('Z) is odd.

Proposition 1. Let xg,...,z, € X and z, = [xo,...,Tn] (0 <m <n). Then it follows:
Zn = [Oéo,nl’o, a1 nTy, 705n,n37n]7 Tn = [Oéo,nzth a1 p21,: 705n,nzn]-

We assume that there is a functional p,
p: X\ {0} - R" suchthat p([zg,...,z,]) = Z @ npt(;) (4)
i=0

(here, 1£(0) is not defined since (4) with equal x; can lead to some contradictions) and assign a
topology on X by defining: if # # 0 then z,, — z (z,, converges to x as n — o0) if p(z,) — p(x),
and x, — 0 if p(z,) — 0. Then it follows that G = G(X,[,], 1) is a topological group. One
can consider the direct products of such algebras (e.g., for the aims of the multidimensional
difference analysis). Let G; = G(X,, [, ]i, i), 1 <7 < mn, n > 2 be some minimal Lie algebras;
then one can construct such algebra G = G x - - - x G, on cartesian product X = X; x---x X,
by assuming that [x,y] = ([z1,11]1, - -, [Tn, Ynln) for x,y € X and that p : X — R" is given
by p= (pi1, -, fin)-

2.3. Independent random binary processes. We present an example of minimal algebra
defined on the collection X of pairwise independent binary random variables £ € {0,1}. For
&,n € X we consider a variable £ & n (= [£,7n]), whose distribution of probabilities coincides
with the distribution of the absolute difference |£ — n|. We assign the probabilities as P(§ =
A) = 3(1£(—=1)*n) where X € {0,1} and 7 € (0,1) and denote 7 = 7(£) (to avoid some formal
complications we assumed 7 # 0,1). The u(§) = —Inm(&) is a functional of the type (4) (see
next Theorem 1), and hence, we obtain a probabilistic example G = G(X, @, ) of the minimal
algebra.

In the following we consider the absolute differences taken from a given random process
& = (&,8&,...,&,,...) where &, are independent and take the values 0 and 1 with positive
probabilities — such & (but not their difference series) are studied, e.g., in a paper by Marsaglia
[7]. The variables &, @ &,11 also take binary values with some positive probabilities, and the
difference (of order 1) process £€1) = ( P,ﬁél), o 7&(11)7 ...) is defined as independent process
where the distribution of &(11) coincides with the distribution of &, ®&,,+1. The k-th order (k > 1)
difference process &% is defined as 1st order difference taken from £V, Our assumption that
for every 0 < k < +o0o the process £€* is independent yields that ﬂ(fflk)) are determined by
kth line of P

Theorem 1. Forn,k > 1 the following relations are true:

&P =6 bunrls Wa((Gnse o Gnni]) = Y i Inm(Ensi). (5)

0<i<k



3. Fine limits in minimal Lie algebras.

We are interested in the topological aspect of the algebras G = (X, [, ], u) — we consider the
limits of infinite sequences from X. In potential theory the Wiener criterion and fine sets are
used for studying the limits of potentials (e.g., the Cartan theorem on quasi-continuity of the
Newton potential [8, 9]). Following this, we assign some ”fine” sets (§-sets) in natural series N
and consider fine convergence (F-convergence) and fine limits (F-lim) of difference orbits. We
use potential theory terminology (fine or thin sets, etc) because of formal similarity of next
relation (7) with the Wiener criterion in the probabilistic potential theory [10, 11].

We consider the following binary codes of numbers k € N — it is a vector (so, s1, . . ., Sp—1) with
binary components s; € {0,1} (bits) for which k = >>7_ 5,27 and s, = 1. Let w(k) = 37", s;
be the number of units (the weight) in the code of k. For e C N we define

Cle) = w(k) (6)

kee

and call C(e) the capacity of e. For E C N we denote E,, = EN{k e N:2" < k < 2"},

Definition 1. A set E C N is called a fine set (§-set) if the relation

i 27"C(E,) < o0 (7)

holds. An infinite sequence x,, € X 1is called §-convergent to x,

§—lim z, =z, if there is an §—set E such that lim p(z,) = p(x). (8)
n—00 nnENs%

The C is an additive measure on subsets of [2",2""!) and C([2",2""!)) = 2". We consider
the sets B,(s) = {2" < k < 2" . w(k) < s} where 0 < s < n. Since for some cases
C(By,(s)) < const.C(0B,(s)) (when n is large and s is small; for such cases the C(B,(s)) can be
substituted by C(0B,(s)) which is equal to (7)) what is a characteristic property of classical
capacities (with const. = 1, e.g., [10]), we called C a capacity.

It follows from (6) that the capacity C concerns several notions in information theory. To
demonstrate this we identify a number k& € [2",2"!) (the segment of natural numbers, 2" <

k < 2"*1) with a vertex (sg, s1,...,8n_1) (the binary code of k) of n-dimensional cube [0, 1]".

/
n—1

If (s0,S1,---,5n-1) and (sp, s}, ..., s,,_;) are the codes of k and k', then the Hamming distance
between k and £’ is the number of such i for which s; # s;. By Eq. (6) the capacity C of B, (s) is
equal to the following sum of binomial coefficients: o(n, s) = >°;_; (7). The cardinality of B, (s)
(the Hamming volume) is also equal to o(n, s); the o coincides also with some other quantities
in coding theory mentioned in next Proposition (see, e.g., [13] for details and definitions; for
estimates of o by Shannon function see [14]). In next formulation, Vy(e) is the Hamming
volume of e, by is the Hamming bound from coding theory (the by (n, s) is an upper bound for
the size of binary s-error corrected codes of length n), and H(z) = xlogy z + (1 — x) logy(1 — )

is the Shannon entropy function (it is assumed for its argument in (9) that s/n < 1/2).



Proposition 2. The B,(s) is a ball of radius s in the Hamming metric (the Hamming ball)

centered at 2™ and the following relations
C(Bu(s)) = Vir(Bu(s)) = 2"(bu(n, s))~" = 2"H(s/m+om) ©)

hold. Particularly, it follows that the union E = \J_, B,(s,) is an §—set if and only if

o0

> (bu(n, sn)) " < o

n=1

A computation shows that there exists a union of balls E' = | J 7, B,(s,) whose radii s,, grow
to oo and such that E is an §-set. Hence, every such E with upper bounded radii s, is also
an §-set. This explains the reason of our Definition 1 — it is allowed by this Definition that
some small sets F of indices k € N can be neglected when determining the F-limits (cp. Eq.
(8)). For example, if F is a union of balls B, (s,) whose radii s,, < s, then for every k € E the
w(gff)) (Section 2.3) is a product of lesser than s different 7(&;), what implies that as a rule,
their limit as k growth to co remaining in E, does not exist. E.g., one can refer to identically
distributed &€ — here, 7(&) =, 0 < m < 1 and (&) = 72" (a self-similar structure of the
triangle IP yields that the number of units in k-th line of PP is equal to 2@()+1),

The discussed is similar to metrical statements on covering the classical fine sets by (euclidean
and non-euclidean) balls (e.g., [9]). We formulate another related metrical result from [2, 4].
For z € [0, 1] we consider infinite binary expansions x = 0.z1, T, . .. and let for k > 2 the Ej, be
the collection of such x € [0, 1] for which every segment x;, ..., x;1; of the expansion contains
both symbols 0 and 1.

Theorem 2. For every k > 2 the Hausdorff dimension D(Ey) of the set Ej satisfies the

following relation:
k

> P =,

n=1

For g-adic version of this Theorem, see [2, 4].

Definition 2. Let G = G(X,[,],p) be given, x = (x1,x2,...), x, € X be infinite sequence,

o) = [Ty ooy Tnak], and x2° be F-limit of the sequence 2P ask — co. The x™ = (x$°,25°,...)

1s called the final difference sequence for x.

Thus, it follows from (4) that if for x = (21, 29, ...) the ™ exists, then for every n
k
§— lim ZO g Tpi) = p(ay’).

E.g., it follows from (5) that for a given random process &€ the differences £€*) converge to £

iff for every n the () is F-convergent to some numbers s, € [0, 1]; then 7(£) = s,..

Theorem 3. If £ is identically distributed binary process (the Bernoulli trials), then £ is the

symmetric equi-distributed process.



The next Theorem relates to arbitrary G = (X, [,], 1), usual limits, and w-sets (cluster sets);
we remind that a set is called a perfect set if it is closed and its every point is also its limiting
point. In applications this Theorem can concern the conservative systems as well as can explain
the emergence of the Cantorian structure in the attractors of dissipative systems (see Theorem

7 for an example):

Theorem 4. Let z, € X be infinite sequence and z, = [xo,...,x,|. If p(x,) = const. > 0,
then w-set of the sequence p(zy,) is a discrete countable closed set. If p(x,) is monotone and

decreases to 0, then w-set of the pu(z,) is a nontrivial perfect set.

4. Application to dynamical systems.

We define a difference-shift transform ([2, 4]) and present some results on so-called Bernoulli
maps. We first consider arbitrary groups G = (X, [,]) defined by (3) and formulate the following

(the Proposition 4 concerns arbitrary minimal algebras G = (X, [,], p):

Definition 3. Let T : X — X be a map. The map T : X — X defined as Tx = [z, Tx] is
called algebraically conjugate to T. A map T is called commutative if TT =1T.

Proposition 3. Let T : X — X be commutative. Then for x € X andn € N

[z, Tx,..., T x] = "z, [z, Tz, ... ,'fmx] =T"x. (10)
Proposition 4. Let T : X — X be commutative and x,, = T"x be an orbit. Then if x3° exists,

then for every m > 1 the z,° also exists, and the final orbit is: x;° = T"z5°.

The algebraic conjugation differs from the topological one: e.g., the Bernoulli shift B (defined
in next Section) is topologically conjugate to so-called tent and 4-logistic maps [12], but B is

not algebraically conjugate to them.

4.1. A difference-shift map. We consider the Bernoulli shift B : = — {2z} (dyadic or
bit-shift map [12, 16]; {.} and [.] denote the fractional and entire parts of a positive number,
a = {a} + [a]) and the difference-shift map M ([2, 4]), both are defined on the segment [0, 1]

(their graphs on Fig. 1 are presented). In binary notation these maps are defined as follows:
B: 0wwy... = Owows... and M: Owwy... = 0.(w; Bws)(ws Bws).... (11)

The shift M is the sum of the identical map Fx = x and the shift B with respect to some

exotic arithmetic, M = E{B. This arithmetic is the following: considering binary expansion,
for a = 0.e169... and b= 0.0102... we define afb = 0.(e1 ® d1)(e2 D I2) .. .. (12)

Considering binary expansion of natural numbers: ¢(m) = (go,¢1,...,&,) where m = Y1 £;2"
and ¢; € {0,1}, for a,b € N we define: if ¢(a) = (g¢,...,€n), c(b) = (do, ..., k), then c(atb) =
(€0 ® 0o, -,k B Ok, Eks1,---,En) (we assumed n > k). For a,b € RT the afb € RT is a real
number for which [atb] = [a]t[b] and {atb} = {a}1{b}; for example, 511 = 4, 513 = 6, 63 = 5.
It is clear how this arithmetic is extended to arbitrary real numbers from R. This determines

an additive commutative group (R, T) with the arithmetic (12) which is not isomorphic to the



function M(X)

FIGURE 1. The "fractal” letter "M” ([2, 4]) — the graph of the difference shift M, and
the graph of the Bernoulli shift B. These maps are algebraically conjugate to each
other: [z, Mz] = Bz and [z, Bx] = Mx.

standard additive group (R, +) of real numbers. In next Proposition the group G = ([0, 1], 1)
with the arithmetic (12) is considered:

Proposition 5. For the maps B and M the relations B = M, M = B, BM = MB hold,
and hence, they are algebraically conjugate each other and both are commutative: BB = BB,
MM = MM. In addition, Eq. (10) gives the following identities:

|z, Bx,...,B"z| = M"z, [z,Mx,...,M"x] = B"x. (13)

The Eq. (13) and Birkhoff ergodic theorem (one can prove that the Lebesgue measure on
[0, 1] is invariant measure for B and for M) imply the ”a.e.”-convergence (”almost every”) of

the mean values of difference series H™ (we denote them H]gm) and Hﬁ)) for these maps:

Proposition 6. There is a positive constant C' such that for a.e. x € [0,1] the relation

n

T}Lrgo% SHP (@) =C (= /01 B(z)dz = 1/2)

holds. The same is true for the map M.

Let us consider the topological entropy of the map M. The topological entropy h(T) of
a map T : [0,1] — [0,1] concerns the ability of 7" to transform a given segment A C [0, 1]
into a number of smaller ones (for strict definition see, e.g., [15, 17]). Theorem 6 follows from
Theorem 5 and the Bowen lemma on periodic orbits ([17], Ch. 5.4]).

Theorem 5. Let p > 3 and a number 0 < x < 1 be binary-rational,

= 0.5051 . ..5p-15,00. .. (80,81, .8p-1 €{0,1}, s, =1,8,4;, =0 fori>1).
Then the orbit (M™x),,>¢ is periodic with the period T = 20°g2(P=1)],
Theorem 6. The topological entropy of the map M is positive, h(M) > 0.

The difference orbits of M coincide with its iterates, S,, = H™ = M™. As noticed in
Section 2.1, such a situation is quite common, and hence, the shift M is quite universal when
one applies difference analysis. In literature, a universality of the Bernoulli shift B in chaotic

dynamics is also noted [12].



4.2. Bernoulli maps. Let us denote Q = [0,1], X = 2% and for A, B € X define a bracket
[A,B] = A A B where A is the symmetric difference: A A B = (A\ B)J(B \ A), Then Eq.
(3) is satisfied and hence the group G = (X, A) is determined. We define the multiplication:
0A =0 and 1A = A and present the following formula:

[A[), A17 cey An] = Oéoon A al,nAl A A Oén’nAn.

Let a positive Borelian measure m on € be given, m(2) = 1. We consider Bernoulli maps:
amap T : Q — Q is called the Bernoulli map (with respect to m) if for every measurable
A C Q the relation m(ANTA) = m(A)m(T'A) holds. For A € X one can define a random
variable &4 = £4(x) which takes the value 1if z € A and 0 if x € A° and whose distribution
of probabilities is: P(£4 = 1) = m(A) and P({4 = 0) = 1 — m(A). It follows that a map
T :Q — Qis a Bernoulli map iff for every A C Q of positive m-measure the variables £4 and
&ra are independent. Then p(A) = —In|2m(A) — 1| is of the type (4) (cp. Section 2.3). Let
for a map T and A C 2 the A denotes the following fine difference attractor

AF =3 lim [A, TA, ..., T"A]

n—o0

and E4(T) denotes the w-set of the sequence m(7"A). The next Theorem provides us with
a topological criterion for a measure m on €2 to be an invariant measure for a given Bernoulli
map. It also asserts that it is either A® = Q or (under an assumption on monotony) AF = ()

(in both cases — up to a set of zero m-measure):

Theorem 7. Let T be a Bernoulli map on (Q,m) and A C Q be a set of positive m-measure. If
m(T"A) = m(A) for every n, then EA(T) is a discrete countable closed set and m(A¥) = 1. If
m(T™A) is monotone and decreases to 0 as n growth to 0o, then E4(T) is a non-trivial perfect
set and m(AF) = 0.
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Minimal Lie Algebra, Fine Limits, and Dynamical Systems

The paper concerns a method for analyzing discrete dynamical systems, which emphasizes the
orbits higher difference structure. An abstract minimal Lie algebra, which provides us with the
axiomatic basis for such analysis, is introduced. The fine sets and limits, defined by means of
Wiener criterion (in probabilistic potential theory) type relation, are considered. Some
connections with coding theory are discussed. A difference-shift map is defined and its relation to
Bernoulli shift is considered. A topological criterion for a measure to be an invariant measure for
agiven Bernoulli map is established and aresult on fine attractors is presented.
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U. 3nt. Cwhytpnyw
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