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1. Riemannian Ric —semisymmetric manifolds are characterized by the condition of semi-
parallelism of Ricci tensor R, (R(X,Y)R, =0) and have been the subject of investigation over the
last forty years (see [1, 2] and the literature cited there). The interest towards them stems from the
fact that they are the generalizations of Riemannian symmetric, semisymmetric and Einstein
manifolds. Some particular classes of Ric-semisymmetric manifolds and submanifolds were

investigated in [1-12].

In this article the general classification of normally flat Ric-semisymmetric submanifolds in

Euclidean spaces is presented.

2. Let M be a Riemannian manifold with Riemannian connection V and curvature tensor R . It

is known that curvature operators R(X,Y)=V ,V, -V, V -V, actas differentiations of tensor

algebra on M . For example,
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(R(X,Y)R)Z =R(X,Y)R(Z)-R(R(X,Y)Z),
where X,Y,Z are the arbitrary tangent vector fields on M . It is also known that at every point
x € M Ricci tensor R, acts as a symmetric endomorphism of the tangent space T (M ) If R =0,
then the Riemannian manifold is said to be ricci-flat. If R, = A/, where A =const and [ is the
identity transformation, then the manifold M is called Einsteinian. If R(X Y )R1 =0 forany X,Y
(which is equivalent to the condition R(X,Y)-R, =R, - R(X,Y)), then the Riemannian manifold is
called Ric—semisymmetric. It is proved by the author, that the smooth Riemannian manifold M

satisfies the condition R(X Y )Rl =0 if and only if it is an open part of the direct product of two-

dimensional, Einstein and semi-Einstein submanifolds [13].

3. Let M be a Riemannian manifold and x €M be an arbitrary point. The subspace
TX(O) ={XeT.(M) R(X,Y)=0VY eT.(M)} of the tangent space T.(M) is called nullity space at
point x, and its dimension z_=dim 7" is said to be the index of nullity at x. The distribution
7 (the nullity distribution) is integrable and totally geodesic, and its integral manifold is locally
Euclidean in the induced metric [14]. The space T, X(O) lies in the subspace of eigenvectors of the
tensor R,, corresponding to the zero eigenvalue. The orthogonal complement T x(l) of the space T Y(O)
in T, (M ) with respect to the Riemannian metric on M is called conullity space at x, and its
dimension is called conullity index at this point. The space T x(l) is invariant under the operators
R(X ,Y ) and the tensor R,. Consequently, at every point x € M the Ricci tensor R, has two

invariant subspaces 7\°), TV and we have the direct sum decomposition 7, (M)=T" +T" (see

[13] for details). The Riemannian manifold M with non-zero nullity index is called semi-Einstein,

if Ricci tensor R, has only one non-zero eigenvalue on T X('). Examples of semi-Einstein manifolds

are the Riemannian manifolds of conullity 2 [1], as well as cones over Einstein manifolds with

negative Einstein constants [10].

4. Let M be the submanifold of n-dimensional Euclidean space E, . By R, R*, a,, A‘f we will

denote, respectively, the curvature tensor of Riemannian connection of induced metric on M , the

curvature tensor of normal connection, the second fundamental form and the second fundamental
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tensor with respect to normal vector field & (cm. [15]). If R =0 the submanifold M is called locally
Euclidean, and if R* =0, it is called normally flat. Ricci tensor R, for M is defined in a standard

way. If a, =0, then the submanifold M is called totally geodesic.

5. An isometric immersion M — E, is said to be the product of immersions M, —> E, , if
M =M x---xM,, E, =E, x---xE, and any two subspaces E, and E, (p#y) are totally

orthogonal in E, . In this case we say that M is the direct product of the submanifolds M,,---,M,
or it is reducible (as submanifold). If M =M, x---xM, in E, is irreducible as submanifold, then
we will say, that M is the interlacing product of the submanifolds AM,,---,M . Considering

reducibility of submanifolds in E, we will relay on the following result.

Theorem 1. Let U be a domain of a submanifold M of E, and A,,---,A, pairwise totally
orthogonal integrable distributions in U  (A,(x)+--+A, (x)=T (U) VxeU) with integral

manifolds M,,---,M, respectively. Then the domain U is the product of the submanifolds

r

M,,---,M, if and only if A,,---,A, are parallel with respect to the Riemannian connection V on

M and  are  conjugate  with  respect to the second  fundamental  form

a, (@, (X,Y)=0 VX €A, (x), VY €A, (x), p 2 ).

The necessity of the conditions of Theorem 1 is easily proved (see, for example, [2]), the

sufficiency of these conditions is the subject of Moore’s basic lemma [16].

6. In our investigations V- and Z- decompositions of the tangentspaceof a
Riemannian manifold by Z. Szabo will be used [5]. The construction of these decompositions is as
follows. Let M be a Riemannian manifold and let x € M be a fixed point. In the linear space of

skew-symmetric linear operators T,(M)— T.(M) let us consider the linear subspace %, , spanned
by elements R_(X,Y), where X,Y e T.(M), that is to say, h, =spanR_ (X,Y). For arbitrary two
elements R (X,Y) and R (Z,W) from h_ let us define the commutator according to the formula
[R.(X,Y).R (Z,W)]=R.(X,Y)-R.(Z,W)-R (Z,W)-R (X,Y). Let h, be Lic’s algebra, generated

by the set 4, with respect to this operation, and let P_ be the connected subgroup of the isometry
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group in T, (M ), defined by Ex. This group is called primitive holonomy group at x. Let

T.(M)=v" 47V +...4 7" be the irreducible decomposition of the space T, (M ) with respect to

X

P_. The subspaces Vx(p ' are invariant with respect to the action of P, and pairwise totally
orthogonal. Moreover, P, acts trivially on VX(O), and irreducibly on Vx(” ), p > 0. This decomposition

is called ¥ —decomposition of the space 7.(M). It is easy to show, that V) coincides with the

nullity space T.°).

Theorem 2 (Z. Szab6 [5]). There exists on a Riemannian C” manifold M an open dense subset

G in which the subspaces V ) have constamnt dimensions, V' —decomposition is unique up to the

order of the terms, and the corresponding distributions V) have the following properties on G :

\V4 (O)V(O) - V(O), \V4 (0)V(p) - V(p)’ \V/ (,)V(O) - V(O) +V(p),

Vv Vv 8%

Vs (p)V(p) c vyl \V/ (p)V(’) VY, pxr, p,7#0,

14 Vv -

where the notation VVWV(T) = V') indicates, that for each X € V®) and each Y e V') the vector

(VXY)x lies in Vx(").

From above inclusions it follows that the distributions ¥*), generally speaking, are not
integrable and not parallel on M (though parallelism of some of them is not excluded). However

they can always be extended (in the sense of dimension) to parallel (and consequently integrable)

distributions by Z. Szab6’s method [5], the essence of which is as follows. Let Z — be a subspace

in T.(M), spanned by the vectors

X Vi Xops Vi Vi X

1x 2 2/x 30"

VeV, X

1 X, Pkl

where all the X, belong to V*), p > 0. By definition we put Z* = (Z)(Cl) +ot Zi’))l, where ( )*
denotes the orthogonal complement in 7, (M ). It is easy to see, that Z io) c Vx(o), Vx(" lcz )(f ), p>0.
It follows from the inclusions of Theorem 2, that the extension of the subspace 4% ), p>0, to Z )E” )

X

proceeds only at the expense of subspace VX(O).
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Theorem 3 (Z.Szab6 [5] ). The subspaces Z)(C” ) xeG, are pairwise totally orthogonal, and
there exists an open dense subset GcGeM , on which the Z ) have constant dimensions and

X

the corresponding distributions Z ) are parallel in the Riemannian connection on M .

The decomposition T (M ):Z)(CO) +Z)(Cl) +"'+Z,(f) is called Z —decomposition of the space
T.(M).

7. Let us now turn to the basic objective of the article — the proof of the following theorem.

Theorem 4. 4 normally flat submanifold M in Euclidean space E, is Ric-semisymmetric if

and only if it is an open part of one of the following submanifolds:
(1) normally flat two-dimensional submanifold,

(2) normally flat Einstein submanifold (in particular Ricci-flat or locally Euclidean),

(3) normally flat semi-Einstein submanifold,

(4) normally flat interlacing product of semi-Einstein submanifolds and locally Euclidean

submanifold (may be of zero dimension),
(5) direct product of the above enumerated classes of submanifolds.

Proof. Let Al(x),---,Ar(x) be the subspaces of eigenvectors (eigenspaces) of tensor R, in the
tangent space 7, (M ), and A,,---,A, indicate the corresponding distributions (eigen-distributions).
As in the case of normally flat connection the tensor R, commutes with all the tensors A4, (see
[17]), then the subspaces A,(x),---,A,(x) are conjugated with respect to the second fundamental
form a,. It is known [13], that R(X,Y)Z eAw(x) for any Z eA(p(x) and any X,Y, R(X,Y)=0
for any XeA(p(x) and any YeAw(x), p#y, R(X,Y)Z=0 for any X,YeAw(x) and any
ZeA, (x), @ # ¥ . The latter means that the endomorphisms R(X,Y), X,Y € A 0 (x) act trivially on
A, (x), w#¢. Similarly, as mentioned above, we have a linear subspace hff’) = spanR(X,Y),

(X Y eA w(x)) in the linear space of all skew-symmetric endomorphisms A gD(x)—> A w(x). The
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subspace hf") turns into Lie’s algebra with respect to the bracket operation defined above and it is
the subalgebra of the 4 algebra. Consequently, the primitive holonomy group P_ is reducible and
P = P() X P( ) X oo x P decomposition takes place, where P ) is the subgroup with Lie’s algebra
hi“’). The subgroup Px(“’) acts trivially on A, (x) , ¥ # @, and, generally speaking, it can be reducible

on A w(x). Let A, (x) be eigensubspaces of tensor R,, corresponding to zero eigenvalue, and let

X X

A=V O 4y p 0 A ()= e ) s

be irreducible decompositions of Al(x) and A (o( ) ¢ >1, with respect to the subgroups P and

P, @ > 1, respectively. The first decomposition is based on fact that V( S ( ) Subspaces

X

X

v ') (l o =Loys w) are invariant with respect to actions of Px(q’) (and consequently to those of

P ) and pairwise totally orthogonal. Moreover P (and consequently also P) acts trivially on

(‘/” lw)

VX(O) and irreducibly on V™" *’. Consequently, the decomposition

T.M)=VO 4y 4yl oyl gyl (1)

X X X

is ¥ —decomposition of the space T.(M). Let us note that dim A ¢(x)22 if ¢ >2, because if

X

dimA,(x)=1 forsome ¢, then A (x)c V.

Let the nullity index x=0, that is Vx(o) is trivial. In this case the system of inclusions in

Theorem 2 reduces to the following: VV(/,)V(" lcr, v ( ,V(T) v, p #7. It follows from

VP
here, that the distributions V) are parallel. Based on this, we come to the conclusion, that the

. 1)

distributions V' are parallel. Then each distribution A, being the sum of such distributions, is
also parallel. As A (p(x) is conjugated with respect to the second fundamental form «,, then,

according to Theorem 1, the submanifold M is (locally) the direct product of integral manifolds of

the distributions A . As on each subspace A w(x) the tensor R, has only one eigenvalue, then the

integral manifold of the distribution A is either two-dimensional, or Einstein with zero nullity
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index in both cases. It only remains to note, that the direct product of submanifolds is normally flat

if and only if when each factor-submanifold is normally flat (see, for example, [2], [10], [15]).

Let u>1, that is V' not be a null space. In this case, according to the above constructed

V' —decomposition (1), we can construct the corresponding Z — decomposition

T.(M)=Z9 + 7D 4oy 700 g 70D gy 7)) ()

(9.1,) (9.1,) (9.1, )
where ZW V', Vv <z ’

X —_ X

, and the distributions Z%, Z are parallel in the

Riemannian connection on M (Theorem 3). As while constructing Z decompositions (2) the
possible extensions (in the sense of dimension) of subspaces VX(WW ) c A, (x) take place only due to
the subspace V' (it follows from the inclusions in Theorem 2), then the possible extensions of

subspaces A (x), ¢ >1, also take place only due to the subspace V”. Let us denote these

. ~ . ~ (9.5, )
extensions by A, (x), that is to say Aw(x):Zi‘”’1)+...+Z¢“’

X

if @>2. Then
T.(M)=A(x)+A,(x)++A, (x), where A(x)=ZO+Z0 +...4 70 and A (x) A, (x).
Distributions Zl,-u,Zr , being the sums of parallel distributions, are also parallel on submanifold
M and, consequently, integrable. Let us note, that on Zl(x) the Ricci tensor has only zero

eigenvalue. If any A »(X), ¢>2, coincides with A (x), then on A ,(x) the Ricci tensor has only
one non-zero eigenvalue, and, consequently, the integral manifold of distribution A , 1s either two-
dimensional or Einstein.  And if dimzw(x)>dimA¢(x), then the Ricci tensor has only two
eigenvalues on Zw(x): non-zero on A (x) and zero on the orthogonal complement A (x) in

A, (x). Consequently, the integral manifold of distribution A is semi-Einstein.

Let us consider some possible cases.

A. Let the subspaces Zl(x),---,Zr(x) be conjugate with respect to the second fundamental form
a, . Then, according to Theorem 1, M is locally the direct product of two-dimensional, Einstein

and semi-Einstein submanifolds.
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B. Let the set Zl (x), ---,Zr(x) cannot be decomposed into two groupes such that each subspace
of one groupe is conjugated with each subspace of the second group or with their direct sum with

respect to «,. Then A ,(x) cannot coincide with A (x) for any ¢ =2,...,r. Indeed, if any A » (%)
coincides with A (x), then it will be conjugate with all its orthogonal complement in 7, (M) due to
analogical property A (x), which contradicts the assumption. In this case M is irreducible as a
submanifold in E . Internally it is the direct product of Ricci-flat subanifold and semi-Einstein
submanifolds. However, resulting from the fact that A ,(x) are not conjugated with respect to the

form a,, it follows, that the first normal spaces of integral manifolds of distributions A , interlace.

Consequently, M is normally flat interlacing product of Ricci-flat submanifold (probably of zero
dimension) and semi-Einstein submanifolds.

C. Let us consider now the most general situation. Let from the set of subspaces Zw(x)
(p >2) be separated all those subspaces Zw(x), which are not extensions, that is to say Zw(x)
coincides with A (x). They will conjugate among one other, as well as with the orthogonal
complement of their direct sum. From the remained set of subspaces A ,(X) (p=1) let us also
separate all those subspaces ZX (x) , which are the extensions of the corresponding subspaces A (x)
and conjugate both among one another, and with the direct sum of the remaining subspaces A o (%)

At last, let us consider, that the whole remaining set of subspaces Z(p(x) is decomposed into

disjoint sets so, that all the subspaces of each set conjugate with each subspace of any of the other

sets or with their direct sum. In this case M will look like a direct product N, x N, x...x N, , where
N, is the direct product of normally flat two-dimensional, Einstein and semi-Einstein submanifolds,
and N,,---,N, are the normally flat interlacing products of various sets of semi-Einstein
submanifolds and Ricci-flat submanifold (may be of zero dimension) in one of the sets. The

necessity of conditions of the theorem is proved.

The sufficiency of the conditions of the theorem stems from the fact, that normally flat, two-

dimensional, Einstein and semi-Einstein submanifolds, as well as the above presented normally flat
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interlacing products of semi-Einstein submanifolds and Ricci-flat submanifold are
Ric —semisymmetric, and the condition of Ric—semisymmetry is the inner and multiplicative

property (see [13]). The theorem is proved.

My sincere thanks to professor Oldrich Kowalski for quite helpful consultation on terminology

and Varduhi Hayrapetyan for the careful translation of the article into English.
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It has been proved that a normally flat submanifold M in Euclidean space E, satisfies the
condition R(X,Y)Ricci =0 if and only if it is the open part of one of the following submanifolds:

(1) normally flat two-dimensional submanifold, (2) normally flat Einstein submanifold (in
particular Ricci-flat or locally Euclidean), (3) normally flat semi- Einstein submanifold, (4)
normally flat interlacing product of semi-Einstein submanifolds and  locally Euclidean
submanifold (may be of zero dimension), (5) direct product of the above enumerated classes of

submanifolds.
4. U. Uhpgnyui

‘Lnpdwy huppe Ric— Jhuwuhdtnphl Eipwpuquudlnipiniubbph

punhwunip puuwjupgnidp

Ugugnigqws t, np £, Hyjhpiyut nmwupubmpniunid tnpdw) hwupp M Gupwpwqg-
dwdlnipniup pudupupnid k R(X Y )Ricci =0 wuwydwht wy, b Jhuyt wyt ghwypnud, Epp bw
hwinhuwund  hbnlyjuw) Bupwpuqiudbnipniiitnhg Ukjh pug dwu® (1) inpdw) hwppe Eplsuth
tupupuqUudtimpyul, (2) tnpdwy hwpp Hupubtyut (Uwubtwnpuwbu physh-hwpp, nlug
Eyhpbuywt) Gupwpuquudlnipjul, (3) utnpdwy hwpp Jhuwbjionbiyut tipupuqludlnipju,
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4)  Yhuwhbupnbiyut Gupwpuquwdlnipnitubph b phssh-hwpp Eupwpuquudbnipjut

(htwpunfnp £ qpn ywihp) tnpdwy hwpe  dhwhmunn wpnwnpyugh, (5) Jbpp plupljus
Eupwpuquudbnipniiibinh puubkph ninhn wpunwungpuh:

B. A. Mup3osiH

Oomas kiaaccupukanuss HOPMAJBbHO IVIOCKUX
Ric- monycuMMeTpryecKuX INMOJIMHOro00pasuii

Jloka3aHo, 4TO B €BKJIMJOBOM IPOCTPAaHCTBE £, HOpMalbHO IJIOCKOE MOAMHOroodpasue M
yaoBaeTBopseT ycnoBu R(X,Y)Ricci =0 Torna v TOJbKO TOTJA, KOTJA OHO SIBJIIETCS OTKPBITOM

YacThI0 OJHOTO W3 CIEAYIONUX MOAMHOroobpasuii: (1) HOpMaNTbHO IUIOCKOTO JBYMEPHOTO
NOJMHOroo0pasusi, (2) HOPMaJbHO IUIOCKOTO S3WHIITEMHOBAa (B YAaCTHOCTH, PHYYHU-IUIOCKOTO,
JIOKaJbHO  €BKJIMAOBA) TMoaAMHOroo0Opasus, (3) HOPMaJIbHO IUIOCKOTO  IOJYIWHIITEHHOBA
MOJIMHOT000pa3us, (4) HOPMAIBLHO TIOCKOTO CIUIECTAIOMIETOCS] MPOU3BEIACHHUS MOy MHIITEHHOBBIX
MOJIMHOTOO0pa3uil M PUYYH-TUIOCKOTO TOJIMHOT000pa3usi (BO3MOXKHO pa3MEpPHOCTH HOIB), (5)

IPSIMOTO MTPOU3BENECHNUS IEPEUNCIICHHBIX BbIIIE KJIACCOB MOAMHOI000pa3nil.
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