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1. Riemannian Ric semisymmetric manifolds are characterized by the condition of semi-

parallelism of Ricci tensor 1R  (   0, 1 RYXR ) and have been the subject of investigation over the 

last forty years (see [1, 2] and the literature cited there). The interest towards them stems from the 

fact that they are the generalizations of Riemannian symmetric, semisymmetric and Einstein 

manifolds. Some particular classes of Ric -semisymmetric manifolds and submanifolds were 

investigated in [1-12].  

In this  article the general classification of normally flat Ric-semisymmetric submanifolds in 

Euclidean spaces is presented.  

 2. Let M  be a Riemannian manifold with Riemannian connection   and curvature tensor R . It 

is known that curvature operators ],[),( YXXYYXYXR   act as differentiations of tensor 

algebra on M . For example,  
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         ZYXRRZRYXRZRYXR ,,, 111  , 

where ZYX ,,  are the arbitrary tangent vector fields on M . It is also known that at every point 

Mx  Ricci tensor 1R  acts as a symmetric endomorphism of the tangent space  MTx . If 01 R , 

then the Riemannian manifold is said to be ricci-flat. If IR 1 , where const  and I  is the 

identity transformation, then  the manifold M  is called Einsteinian. If    0, 1 RYXR  for any YX ,  

(which is equivalent to the condition ),(),( 11 YXRRRYXR  ), then the Riemannian manifold is 

called Ric semisymmetric. It is proved by the author, that the smooth Riemannian manifold M  

satisfies the condition   0, 1 RYXR  if and only if it is an open part of the direct product of two-

dimensional, Einstein and semi-Einstein submanifolds  [13]. 

3. Let M  be a Riemannian manifold and Mx  be an arbitrary point.  The subspace  

        MTYYXRMTXT xxx  0,;0  of the tangent space  MTx  is called nullity space at 

point x , and its dimension  0dim xx T  is said to be the index of nullity at x .  The distribution 

 0T  (the nullity distribution) is integrable and totally geodesic, and its integral manifold is locally 

Euclidean in the induced metric [14]. The space  0
xT  lies in the subspace of eigenvectors of the 

tensor 1R , corresponding to the zero eigenvalue. The orthogonal complement  1
xT   of the space  0

xT  

in  MTx  with respect to the Riemannian metric on M   is called conullity space at x , and its 

dimension is called conullity index at this point. The space  1
xT  is invariant under the operators 

 YXR ,  and the tensor 1R . Consequently, at every point Mx  the Ricci tensor 1R  has two 

invariant subspaces  0
xT ,  1

xT  and we have the direct sum decomposition      10
xxx TTMT   (see 

[13] for details). The Riemannian manifold M  with non-zero nullity index is called semi-Einstein, 

if Ricci tensor 1R  has only one non-zero eigenvalue on  1
xT . Examples of semi-Einstein manifolds 

are the Riemannian manifolds of conullity 2 [1], as well as cones over Einstein manifolds with 

negative Einstein constants [10].  

4. Let M  be the submanifold of n -dimensional Euclidean space nE . By  ARR ,,, 2
  we will 

denote, respectively, the curvature tensor of Riemannian connection of induced metric on M , the 

curvature tensor of normal connection, the second fundamental form and the second fundamental 
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tensor with respect to normal vector field  (см. [15]). If 0R  the submanifold M  is called locally 

Euclidean, and if 0R , it is called normally flat. Ricci tensor 1R  for M  is defined in a standard 

way. If 02  , then the submanifold M  is called totally geodesic.                              

5. An isometric immersion nEM   is said to be the product of immersions 
 nEM  , if 

rMMM  1 , 
rnnn EEE  

1
 and any two subspaces 

nE  and 
n

E      are totally 

orthogonal in nE . In this case we say that M  is the direct product of the submanifolds rMM ,,1  ,  

or it is reducible (as submanifold).  If  rMMM  1  in nE  is irreducible as submanifold, then 

we will say, that M  is the interlacing product of the submanifolds rMM ,,1  . Considering 

reducibility of submanifolds in nE  we will relay on the following result. 

Theorem 1. Let U be a domain of a submanifold  M  of nE  and r ,,1   pairwise totally 

orthogonal integrable distributions in U        UxUTxx xr  1  with integral 

manifolds rMM ,,1   respectively. Then the domain U  is the product of the submanifolds 

rMM ,,1   if and only if r ,,1   are parallel with respect to the Riemannian connection   on 

M  and are conjugate with respect to the second fundamental form 

     ),(),(0,22 xYxXYX .  

The necessity of the conditions of Theorem 1 is easily proved (see, for example, [2]), the 

sufficiency of these conditions is the subject of Moore’s basic lemma [16].  

6. In our investigations V - and Z - decompositions of the tangent space of a 

Riemannian manifold by Z. Szabó will be used [5].  The construction of these decompositions is as 

follows. Let M  be a Riemannian manifold and let Mx  be a fixed point. In the linear space of 

skew-symmetric linear operators    MTMT xx   let us consider the linear subspace xh , spanned 

by elements   YXRx , , where  MTYX x, , that is to say,  YXRspanh xx , . For arbitrary two 

elements  YXRx ,  and  WZRx ,  from xh  let us define the commutator according to the formula 

            YXRWZRWZRYXRWZRYXR xxxxxx ,,,,,,,  . Let xh  be Lie’s algebra, generated 

by the set xh  with respect to this operation, and let xP  be the connected subgroup of the isometry 
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group in  MTx , defined by  xh . This group is called primitive holonomy group at x . Let 

       t
xxxx VVVMT  10  be the irreducible decomposition of  the space  MTx  with respect to 

xP . The subspaces )(
xV  are invariant with respect to the  action of xP  and pairwise totally 

orthogonal. Moreover, xP  acts trivially on  0
xV , and irreducibly on   0, 

xV . This decomposition 

is called V decomposition of the space  MTx . It is easy to show, that  0
xV  coincides with the 

nullity space  0
xT . 

Theorem 2 (Z. Szabó [5]). There exists on a Riemannian C  manifold M an open dense subset 

G in which the subspaces  
xV  have constatnt dimensions,  V decomposition is unique up to the 

order of the terms, and the corresponding distributions   V  have the following properties on G : 

 
   

 
    ,, 00

00  VVVV
VV

           
      ,00 

 VVV
V

   

 
      ,0 

 VVV
V

          
    ,

 VV
V

       ,     0,  , 

where the notation  
   

 VV
V

  indicates, that for each  VX   and each  VY   the vector 

 xX Y  lies in  
xV . 

From above inclusions it follows that the distributions  V , generally speaking, are not 

integrable and not parallel on M  (though parallelism of some of them is not excluded). However 

they can always be extended (in the sense of dimension) to parallel (and consequently integrable) 

distributions by  Z. Szabó’s method [5], the essence of which is as follows.  Let  
xZ – be a subspace 

in  MTx , spanned by the vectors 

,,,,,, |1|3|2|1 1211
 xkXXxXXxXx XXXX

k    

where all the kX  belong to  V , 0 . By definition we put        t
xxx ZZZ 10 , where    

denotes the orthogonal complement in  MTx . It is easy to see, that    00
xx VZ  ,    

xx ZV  , 0 . 

It follows from the inclusions of Theorem 2, that the extension of the subspace  
xV , 0 ,  to  

xZ  

proceeds only at the expense of  subspace  0
xV . 
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Theorem 3 (Z.Szabó [5] ). The subspaces  
xZ , Gx , are pairwise totally orthogonal, and 

there exists an open dense subset MGG  , on which the  
xZ  have constant dimensions and 

the corresponding  distributions  Z  are parallel in the Riemannian connection on M . 

        The decomposition        t
xxxx ZZZMT  10  is called Z decomposition of the space 

 MTx . 

7. Let us now turn to the basic objective of the article   the proof of the following theorem. 

Theorem 4. A  normally flat submanifold M  in Euclidean space nE  is Ric -semisymmetric if 

and only if  it is an open part of one of the following submanifolds:  

        (1) normally  flat two-dimensional  submanifold,  

        (2) normally  flat Einstein submanifold (in particular  Ricci-flat or locally Euclidean),  

        (3) normally  flat semi-Einstein submanifold, 

        (4) normally  flat interlacing  product of semi-Einstein submanifolds  and   locally Euclidean  

submanifold  (may  be of  zero dimension), 

        (5)  direct  product of the above enumerated classes of  submanifolds. 

Proof. Let    xx r ,,1   be the subspaces of eigenvectors (eigenspaces) of tensor 1R  in the 

tangent space  MTx , and r ,,1   indicate the corresponding distributions (eigen-distributions). 

As in the case of normally flat connection the tensor 1R  commutes with all the tensors A  (see 

[17]), then  the subspaces    xx r ,,1   are conjugated with respect to the second fundamental 

form 2 . It is known [13], that    xZYXR ,  for any  xZ   and any YX , ,   0, YXR  

for any  xX   and any  xY  ,   ,   0, ZYXR  for any  xYX ,  and any 

 xZ  ,   . The latter means that the endomorphisms  YXR , ,  xYX ,  act trivially on 

 x ,   . Similarly, as mentioned above, we have a linear subspace    YXspanRhx , , 

  xYX ,  in the linear space of all  skew-symmetric endomorphisms    xx   . The 
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subspace  
xh  turns into Lie’s algebra with respect to the bracket operation defined above and it is 

the subalgebra of the xh  algebra. Consequently, the primitive holonomy group xP  is reducible and  

     r
xxxx PPPP  21  decomposition takes place, where  

xP  is the subgroup with Lie’s algebra 

 
xh . The subgroup  

xP  acts trivially on  x ,   , and, generally speaking, it can be reducible 

on  x . Let  x1  be  eigensubspaces of tensor 1R , corresponding to zero eigenvalue,  and let  

       1,11,10
1

s
xxx VVVx   ,            


s

xx VVx ,1,   , 1 , 

be irreducible decompositions of  x1  and  x , 1 , with respect to the subgroups  1
xP  and 

 
xP , 1 , respectively. The first decomposition is based on fact  that    xVx 1

0  . Subspaces 

  l
xV ,

   sl ,,1  are invariant with respect to  actions of  
xP  (and consequently to those of 

xP ) and pairwise totally  orthogonal. Moreover  
xP  (and consequently also xP ) acts trivially on 

 0
xV  and irreducibly on 

  l
xV ,

. Consequently, the decomposition 

                                                      rsr
x

r
x

s
xxxx VVVVVMT ,1,,11,10 1                      (1) 

is V decomposition of the space  MTx . Let us note that   2dim  x  if 2 , because if 

  1dim  x   for some  , then    0
xVx  . 

Let the nullity index 0  , that is  0
xV  is trivial. In this case the system of inclusions in 

Theorem 2 reduces to the following:  
   

 VV
V

 ,     
   

 VV
V

 ,     . It follows from 

here, that the distributions  V  are parallel. Based on this, we come to the conclusion, that the 

distributions   lV ,  are parallel. Then each distribution  , being the sum of such distributions, is 

also parallel. As  x  is conjugated with respect to the second fundamental form 2 , then, 

according to Theorem 1, the submanifold M  is (locally)  the direct product of integral manifolds of 

the distributions  . As on each subspace  x  the tensor 1R  has only one eigenvalue, then the 

integral manifold of  the distribution   is either two-dimensional, or Einstein with zero nullity 
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index in both cases. It only remains to note, that the direct product of submanifolds is normally flat  

if  and only if when each factor-submanifold is normally flat (see, for example, [2], [10], [15]). 

Let 1 , that is )0(
xV  not be a  null space. In this case, according to the above constructed 

V decomposition (1), we can construct the corresponding Z decomposition 

1(1, ) ( , )(0) (1,1) ( ,1)( ) ,rs r sr
x x x x x xT M Z Z Z Z Z                                           (2) 

where ,,
),(),()0()0(   l

x

l

xxx ZVVZ   and the distributions 
),()0( ,  l

ZZ  are parallel in the 

Riemannian connection on M  (Theorem 3). As while constructing Z decompositions (2) the 

possible extensions (in the sense of dimension) of subspaces )(
),(

xV
l

x 
    take place only due to 

the  subspace )0(
xV  (it follows from the inclusions in Theorem 2), then the possible extensions of 

subspaces 1),(   x , also take place only due to the subspace )0(
xV . Let us denote these 

extensions by )(
~

x , that is to say 
),()1,( ...)(

~ 


s

xx ZZx   if 2 . Then 

)(
~

)(
~

)(
~

)( 21 xxxMT rx   , where ,)(
~ ),1()1,1()0(

1
1s

xxx ZZZx    and )()(
~

11 xx  . 

Distributions  r ~
,,

~
1  , being the sums of  parallel distributions, are also parallel on submanifold 

M  and, consequently, integrable. Let us note, that on )(
~

1 x  the Ricci tensor has only zero 

eigenvalue. If any )(
~

x , 2 , coincides with )(x , then on )(
~

x  the Ricci tensor has only 

one non-zero eigenvalue, and, consequently, the integral manifold of distribution 
~

 is either two-

dimensional or Einstein.   And if )(dim)(
~

dim xx   , then the Ricci tensor has only two 

eigenvalues on )(
~

x : non-zero on  )(x  and zero  on  the orthogonal complement )(x   in  

)(
~

x . Consequently,  the integral manifold of  distribution 
~

 is semi-Einstein.  

Let us consider some possible cases. 

A. Let the subspaces )(
~

,),(
~

1 xx r   be conjugate with respect to the second fundamental form 

2 . Then, according to Theorem 1, M  is locally the direct product of two-dimensional, Einstein 

and semi-Einstein submanifolds.  
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B. Let the set )(
~

,),(
~

r1 xx    cannot be decomposed into two groupes such  that each subspace 

of one groupe is  conjugated with each  subspace of the second group or with their direct sum with 

respect to 2 . Then )(
~

x  cannot coincide with )(x  for any r,...,2 . Indeed, if any )(
~

x  

coincides with )(x , then it will be conjugate with all its orthogonal  complement in )(MTx  due to 

analogical property )(x , which contradicts the assumption. In this case M  is irreducible as a 

submanifold in nE . Internally it is the direct product of Ricci-flat subanifold and semi-Einstein 

submanifolds. However, resulting from the fact that )(
~

x  are not conjugated with respect to the 

form 2 , it follows, that the first normal spaces of integral manifolds of distributions 
~

 interlace. 

Consequently, M  is normally flat interlacing product of Ricci-flat submanifold (probably of zero 

dimension) and semi-Einstein submanifolds.   

C. Let us consider now the most general situation. Let from the set of subspaces )(
~

x   

)2(   be separated all those subspaces )(
~

ψ x , which are not extensions, that is to say )(
~

ψ x  

coincides with )(ψ x . They will conjugate among one other, as well as with the orthogonal 

complement  of their direct sum. From the remained set of subspaces )(
~

x  )1(   let us also 

separate all those subspaces )(
~

χ x , which are the extensions of the corresponding subspaces )(χ x  

and conjugate both among one another, and with the direct sum of the remaining subspaces )(
~

x . 

At last, let us consider, that the whole remaining set of subspaces )(
~

x   is decomposed into 

disjoint sets so, that all the  subspaces of each set conjugate with each subspace of any  of the other 

sets or with their direct sum. In this case M  will look like a direct product kNNN  ...10 , where 

0N  is the direct product of normally flat two-dimensional, Einstein and semi-Einstein submanifolds, 

and kNN ,,1   are the normally flat  interlacing products of various sets of semi-Einstein 

submanifolds and Ricci-flat submanifold (may be of zero dimension) in one of the sets. The 

necessity of conditions of the theorem is proved.  

The sufficiency of the conditions of the theorem stems from the fact, that normally flat, two-

dimensional, Einstein and semi-Einstein submanifolds,  as well as the above presented  normally flat 
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interlacing products of semi-Einstein submanifolds and Ricci-flat submanifold are  

Ric semisymmetric, and the condition of Ric semisymmetry is the inner and multiplicative 

property (see [13]). The theorem is proved.  

My sincere thanks to professor Oldrich Kowalski for quite helpful consultation on terminology 

and Varduhi Hayrapetyan  for the careful translation of the article into English. 

          State Engineering University of Armenia 

          Russian State University of Tourism and Service, Yerevan Branch 

 

V. A. Mirzoyan 

General Classification of a Normally Flat Ric - Semisymmetric Submanifolds 

         It has been proved that a  normally flat submanifold M  in Euclidean space nE  satisfies the 

condition 0),( RicciYXR  if and only if  it is the open part of one of the following submanifolds: 

(1) normally  flat two-dimensional  submanifold, (2) normally  flat Einstein submanifold (in 

particular  Ricci-flat or locally Euclidean),  (3) normally  flat semi- Einstein submanifold, (4) 

normally  flat interlacing  product of semi-Einstein submanifolds  and   locally Euclidean  

submanifold  (may  be of  zero dimension), (5)  direct  product of the above enumerated classes of  

submanifolds. 

Վ. Ա. Միրզոյան 

Նորմալ հարթ Ric – կիսասիմետրիկ ենթաբազմաձևությունների  

ընդհանուր դասակարգումը 

 

 Ապացուցված է, որ nE  էվկլիդեսյան տարածությունում նորմալ հարթ M  ենթաբազ-

մաձևությունը բավարարում է   0, RicciYXR  պայմանին այն, և միայն այն դեպքում, երբ նա 

հանդիսանում է հետևյալ ենթաբազմաձևություններից մեկի բաց մաս` (1) նորմալ հարթ երկչափ 

ենթաբազմաձևության, (2) նորմալ հարթ էյնշտեյնյան (մասնավորապես րիչչի-հարթ, լոկալ 

էվկլիդեսյան) ենթաբազմաձևության, (3) նորմալ հարթ կիսաէյնշտեյնյան ենթաբազմաձևության, 
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(4) կիսաէյնշտեյնյան ենթաբազմաձևությունների և րիչչի-հարթ ենթաբազմաձևության 

(հնարավոր է զրո չափի) նորմալ հարթ միահյուսվող արտադրյալի, (5) վերը թվարկած 

ենթաբազմաձևությունների դասերի ուղիղ արտադրյալի: 

В.  А.  Мирзоян 

Общая классификация нормально плоских  

Ric - полусимметрических  подмногообразий 

         Доказано, что в евклидовом пространстве nE  нормально плоское подмногообразие M    

удовлетворяет условию 0),( RicciYXR  тогда и только тогда, когда оно является открытой 

частью одного из следующих  подмногообразий: (1) нормально плоского двумерного 

подмногообразия, (2) нормально плоского эйнштейнова (в частности, риччи-плоского, 

локально евклидова) подмногообразия, (3) нормально плоского полуэйнштейнова 

подмногообразия, (4) нормально плоского сплетающегося  произведения полуэйнштейновых 

подмногообразий и риччи-плоского подмногообразия (возможно размерности ноль), (5) 

прямого произведения перечисленных выше классов подмногообразий. 
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