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1. A sequence of trigonometric Hermite interpolation polynomials with
equidistant interpolation nodes and uniform multiplicities is investigated. Conver-
gence acceleration based on the Eckhoff approach is considered. Corresponding
asymptotic error is derived.

2. In this paper we continue investigations started in [1], where the sequence
T,

p
considered. This method of construction of the trigonometric Hermite interpolants

~N(f)(x), p > 1, N > 1 of trigonometric Hermite interpolation polynomials is

may be considered as a continuation of the method of Berrut and Welcher [2]. Con-
vergence acceleration is achieved by application of the Krylov-Lanczos approach
([3]: [4]) that uses the idea of subtracting a polynomial which represents the discon-
tinuities in the function and some of its first derivatives (jumps). In [1] we assume
that the exact values of the jumps are known. Here we consider the problem of
jumps approximation based on the Eckhoff approach ([5]).

Let f € CP7![-1,1], p > 1. Let ﬁ(,f) denote the discrete Fourier coefficients of

f(j)

N
(5 1 j —imma 2k .
k——

We set fn = ;(LO).
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In [1] we derive relatively compact formula for the trigonometric Hermite in-
terpolation that gives the interpolants as functions of the coefficients in the discrete
Fourier coefficients of the derivative values

N(+o) p-1 (5]

()= Y N Y Z S (m)emmkeN T

m=—N(1-c) j=0 k=—[£]

Here o = 0 for odd values of parameter p, 0 = 1 for even values and [z] denotes
the greatest integer less than or equal to z. Numbers ¢, ;j(m) are defined by the

formula
1 m
crj(m) == rON T 1))Jﬂk,j (2N+ 1) ,
where
Bri(0) = D (1P pu(a) a1 o

[T®x-0

(1};;[ ]

and the p;(z) are coefficients of the polynomial

(23]

IT &+ @+s) Zps : (2)

s=—14]

The accelerating convergence of T, v(f) is achieved ([1]) by the Krylov-
Lanczos approach. Let A;(f) be the jump of the k-th derivative of function f

Ar(f) = FP(1) = fO(=1), k=0,

The following expansion is crucial for the Krylov-Lanczos approach

qg—1
fla) = Fla)+ Y Adf)Bi(w). 3)
k=0
where the Bj are 2-periodic extensions of the Bernoulli polynomials with the Fourier
coefficients
B 0, n =20,
k,n = _1\n+1
W> n # 0,

and F' is a 2-periodic and smooth function (F' € C9"'(R)) on the real line.
Approximation of F' in (3) by T, n(f), for ¢ > p, leads to the Hermite-Krylov-

Lanczos interpolation ([1])
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N(l+o) p—1 (2] q—1

Z Z F Z Ck,j (m)eiﬁ(m+k(2N+1))$ + Z Ak(f)Bk($)>

m=—N(1-0) j=0 k=—[5] k=0
where the coefficients £
We put

Typn(f)(z) =
can be calculated from (3).

Rypn () (@) = fz) — Typn(f)(x)
and by || f|| we denote the standard norm in the space Ly(—1,1)

= ( [ s "

The next theorem reveals the asymptotic behavior of the Hermite-Krylov-
Lanczos interpolation.

Theorem 1. [1] Let f € C9[—1,1], ¢ > 1 be such that f9 is absolutely contin-
uous on [—1,1]. Then the following estimate holds for ¢ > p

Jim (2N + D2 | Ry ()] = [Ag(H)lt(a ),

e B2 (p1 2 3
< (=1 2%a+?
t = : — —_—
= () ;ﬁmz S S R L
7—5 = S
where
~[8)-1
§=—00 ]+1

and the [ ; are defined by (1 ).
Numerical values of #(q, p) are presented in Table 1.

Table 1: Numerical values of ¢(q, p).

g\p| 1 2 3 4 5
1 |0.24 — — — —
2 |0.11 0.025 — — —
3 10.063| 9.4-1073| 3.6-1073 — —
4 10.034| 24-103| 58-107*| 22-107¢ —
5 10020 7.7-107*| 15-107*| 5.0-107°| 2.3-107°

3. First we consider the problem of the jumps approximation by the Fourier

coefficients £

). In view of (3) we write

qg—1
ED = O =" Au(f)
k=j
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Taking into account that EY asymptotically (n — oo) decay faster than the coeffi-
cients [ we get the following system of equations with unknowns lek( f,N)

qg—1
fr(zj) = ZAk(f, N)B,Ig_jﬂ, n=mny,ng,...,Ng, ] = 07 Y L. (5)
h=j

In the remainder of this paper we will assume for simplicity that ¢ is even.
Odd values of ¢ can be handled similarly. We are interested in the case when
P=q.

For n = £ N from (5) we derive

a_1q qa_q

P P
i) = ZZ%B%—%N + ZZ%—&—IB%—%-&-LN, 0<y< g -1,
k=j k=j
g1 g1
fg@) = le2kB2k—2j,—N + Z/Nl%+1g2k—2j+1,—zv, 0<;5< % - 1.
k=j k=j
Taking into account the obvious relations
BQk,—n = —B%,n, B2k+1,—n = B2k+1,n (6)
we get
yﬁj)_f(‘%)—%_lﬁ B 0<ji<d_q 7
5 —kzj 2kD2k—24 N _]_5— . ()
Similarly, we obtain
ﬁﬁl)_ﬁﬁﬂ)—g_lﬁ B 0<j<< 1 8
5 = ; 2k+1DP2k—25,N, U S ] > 5— . ( )

First we need the following lemma.
Lemma 1. The following estimate is true

(=) oy
2(im (2N 1 1))FH

Bin = + O(NTF3) N — oo,

where

Proof. We have
GRS (=1)°
2(im)k+1 P (N(2s 4+ 1) + s)k+1

Bk,N = Z Bk,N+s(2N+1) =

S=—00

B e R N L N G ) e D
B 2(m)k+1r;)< k )WZ (25 + L)mHkil’
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This ends the proof.

The next theorem reveals the accuracy of the jumps approximation by systems
(7) and (8).

Theorem 2. Let g > 2 be an even number and f € C?—1,1]| with absolutely
continuous f9 on [-1,1]. Then the following estimates hold for the solutions of
systems (7) and (8) as N — oo and k=0,---,2 -1

A N)—A = A
2k(f7 ) Qk(f) Q(f) (27’((2N+ 1))q—2k

A N)—A = A
2]€+1(f7 ) 2]€+1(f) q+1(f) (27T(2N + 1))q—2k

where the v, are defined by the recurrent relation

+ o(N7T2H), (9)

+ o( N~7T2F), (10)

M5
—

. q
Vg Pak—2j = Pg—25, J = 0, 5 T L. (11)

=Jj

>

Proof. We start with the proof of estimate (9). Lemma 1, Equations (4) and

(5) imply as N — oo for j =0,---,4 -1

(=)o

2(im(2N + 1))a-2+1 +o(NTHHH, (12)

q—1
P =" Au(f)Brosjen + Ay(f)

k=2j
In view of relations (6) we get from (7) and (12) as N — o

(=D gy
2(im(2N + 1))a-2+1

[y

NS

(A/Qk - AQk)BQk—2j,N = Aq(f) + O(N_q+2j_1)‘ (13)

=J

Eod

We proceed by the help of mathematical induction. For j = (¢ —2)/2 Equation (13)
implies

(_1)N+1
12(im(2N + 1))
which coincides with (9) when k& = (¢ — 2)/2. Suppose that (9) is valid for k£ =
Jo,-+,(q—2)/2. For j = jo — 1 we have from (13)

(Agz — Ay2)Boy = A

T2 +o(N7%)

q
11

(;123‘0—2 - A2jg—2)BO,N + Z(/Nl% — A2k)B2k—2jo+2,N

k=jo

(_1)N+190q—2jo+2 —q+2j0—3
Ay( )Q(M(QNH))(]_QM?, o( N—0+200=3),

Taking into account that (9) is valid for k£ = jo,--- , (¢ —2)/2 we get (in view of (11))

41
~ A, I
Agjoo = Agj2 = 2(im(2N + 1))a-2o+2 kZ VePok—2jo+2 — Pg—2jo+2
=Jo
—g+2jo—2 Aq —at2jo-2
+ o(N ) = -1+ o(N )-

2(im(2N + 1))i—2o+2 "
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This ends the proof of the first estimate. The second can be proved similarly.
Suppose that A, are determined from system (5). We expand the interpolated
function in the form

F@) = G) + 3 Au(f N)By(a). (14)

Approximation of G, for ¢ > p, by the trigonometric Hermite interpolation 7}, y(f)
leads to the Hermite- Eckhoff interpolation

N(1+o0) [p 1] p—1 q—1
Town(N@) = D Y D Cey(m)em eI LN T4 (f,N) By (),
m=—N(1-0) k=—[5] j=0 k=0

where the G% can be calculated from (14).
Denote

Rypn (@) = f(2) = Topn (f) (). (15)

We are interested in asymptotic behavior of §q7p7 ~. First we will proof some auxiliary
lemmas.
Let ﬁ(ﬂ ) be the Fourier coefficients of the j-th derivative of f

: 1t ‘
f9) = 5/ fO(x)e ™= dg, j > 0.
-1

We set f, := 7(10).
Lemma 2. Let f € C[—1,1] for some ¢ > 1 and f9 be absolutely continuous
n [—1,1]. Then for 0 < j < q— 1 the following is true

.
[y

— m+1
G) — (i iy =y
Gm - (Z,Nm) G kO(Ak(f) Ak(f> N))Q(Z"/Tm)k_j""l‘
Proof. Due to integration by parts we get
) )m—‘rl
J) — J
G,;) = (imm)’ G, Z A(G Slimm) k T

This completes the proof as A,(G) = Au(f) — Ax(f), k=0,--- ¢ — 1.

Lemma 3. Let ¢ > 2 be an even number and f € C9[—1, 1] with absolutely con-
tinuous f9 on [-1,1]. Suppose that approximate values of the jumps are calculated
from systems (7) and (8). Then the following estimate holds for 0 < j < ¢ —1 as
N — o0

9q

, —1)"mA,(f) 2 7 i (=)™

ay = —AU) vy 2
2(im(2N + 1))a—i+1 k%] (2N+1)2k—J+1 T
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where v, := —1.
Proof. Expansion (14) implies for m # 0
q-1 N
GO = (Ar = Ap)Bijm + AgByjm + o(m™ 7 71), m — o0,
k=j

Application of Theorem 2 leads to the required estimate.

The next investigates the Hermite-Eckhoff interpolation for even values of ¢
when the approximate values of the jumps are calculated from systems (7) and (8).

Theorem 3. Let ¢ > 2 be an even number and f € C9—1,1]| with absolutely
continuous f9 on [-1,1]. Suppose that approximate values of the jumps are calcu-
lated from systems (7) and (8). Then the following estimate holds

[44(f)]
V/2matl

Jim (2N + 1)72| Ry ]| = i(a)

< ——1
q
2

—zﬂm DT g |
] S

(= []+1

g1

l\3|>Q
,_.

(=D°

(z + s)2t7t1

l/e
= j=20+1 :_g

q 2 1
2

l=

where
> =
k

v, == —1 and the (3 ; and the v, are defined by (1) and (11), respectively.
Proof. Taking into account that

I M :
M

k=—o00

“0) N )
Gl =D Grlinsy (16)
it is easy to verify that
oN 2-1 g—1 2
|Ryan (DIP = 2D > [Gosronsny — Y i (m)GY)
m=0 p=—4 j=0
2N
* 2
+ 2 Z Z }Gm—&—k(QN—&-l)} . (17)

m=0 &k
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Application of Lemmas' 2, 3 and Theorem 2 yields

(D)™ Ay(f)
2(im(2N + 1))at!

qg—1
Gonnonn) = Y cry(m)GY) =
5=0

IN+1
q—1 %_1 . (_1)5

+ > Briltm) > > — %_ﬁl) +o(N-91),
j=0 e=[il] s (2N+1 +5)

Replacing the last into (17), taking into account Lemma 3, and then, tending N to
infinity by replacing the Riemann's sums with the corresponding integrals we get
the required estimate.

In Table 2 we present the numerical values of ¢(¢q) for different values of ¢
(also for odd values).

Table 2: Numerical values of #(q).

024 | 0.2 |0.04 | 001 |2-1073

Comparison of Theorems 1 and 3 shows that approximation of the jumps by
systems (7) and (8) doesn't degrade the rate of convergence, it influences only on
the constant ¢(p, q) (see Theorem 1).
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A. V. Poghosyan
Asymptotic Behavior of Hermite-Eckhoff Interpolation

A sequence of Hermite trigonometric interpolation polynomials with equidistant in-
terpolation nodes and uniform multiplicities is investigated. We derive relatively compact
formula that gives the interpolants as functions of the coefficients in the DFTs of the
derivative values. The coefficients can be calculated by the FFT algorithm. Convergence
acceleration based on the Eckhoff method is considered. Approximation of jumps is ex-

plored and the corresponding exact constant of the asymptotic error is obtained.
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A. B. I'lorocsu

ACHMIITOTHKA MHTEPIOAIIIHN OpMHUTa-OKroda

N3ydyeHa 3pMUTOBa TPUTOHOMETPHUUECKAsI PABHOOTCTOSIIAS NHTEPIIOASILINS U IIPEA-
CTaBA€HA IBHAasl pOPMyAd, KOTOPasl peaAru3yeTcs HOCPeACTBOM AUCKPETHOT'0 IIpeodpa3oBa-
Husa Oypbe 3HaUeHUY (QPYHKIIMK U ee IPOMU3BOAHBIX. PaccMaTpuBalOTCs 3apada YCKOPEHUs
CXOAMMOCTH C OpPUMEHEeHHeM MeToAa JKroda u IpodOaeMa alnmpoKCUMAIUKU CKAavyKOB.

HOAY‘IeHa ACHUMIITOTHYECKHM TOYHAsA OLI€HKa OIITNOKM.

W. Jd. Mnpnujub
Ntpthyp-Ejhndh hinpipynjughwh wupduppnipujui Juppp

Nuunmdtwuppymy £ Ntpdhyph Gowblymbwsuhwljub hujwuwpwhtn hwbgnyggutpnyg hi-
ytipynpgughwi, ti Jtpohthu hwdwp ohpuyugymd £ pugwhwpp pwbwat’ mbyghuwgh ta
Upw wowbhgyubiph diphtih nhuptiyp dtiwhnunigymubiitiph ptipdhtbbpny: Mumdbwuehpymy
huptipynyyughuwyh gmqudhypmpyui wpugqugdwd jubnhpp, Eyhndh hwypoh depanh jhpundwdp:
“Hhpuplymd b pohgptinh dnypupljdwb juinhpp e upugdmd GO htptipunyjughuwh upuwpuwiph
wuhdyynipnptl Sogphip qiwhuwpuijuibbtinn:
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