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1. For a given smooth function f € CP~![-1,1] we consider the sequence
Ton(f)(x), p>1, N > 1, of trigonometric Hermite interpolation polynomials with
prescribed values
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Trigonometric Hermite interpolation on equidistant nodes were discussed by

different authors (see, for example, Kress [1], Nersessian [2], Sahakyan [3] and
Berrut, Welscher [4] with references therein). A new idea has recently come up
in Hermite trigonometric interpolation: considering the separate discrete Fourier
transforms (DFTs) of the various derivatives of f and then writing the Hermite in-
terpolant in terms of the thereby obtained coefficients. Berrut and Welcher [4]
developed a formula for the Fourier coefficients in terms of those of the two classi-
cal trigonometric polynomials interpolating the values and those of the derivative
separately. This formula treats the most customary case, i.e., the classical Her-
mite interpolant that uses only the first order derivatives at every point for an even
number of equidistant points. As showed the authors this formula yields the co-
efficients with a single FFT. They also gave an aliasing formula for the error in
the coefficients which, on its turn, yields error bounds and convergence results for
differentiable as well as analytic functions.
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It is well known that the resulting error of Hermite trigonometric interpolation
is strongly dependent on the smoothness of the interpolated function. Interpola-
tion of a 2-periodic and smooth function is highly effective. When the interpolated
function has a point of discontinuity, the interpolation leads to the Gibbs phe-
nomenon. The oscillations caused by this phenomenon are typically propagated
into regions away from the singularity and degrade the quality of the approxi-
mations. Different ways of treating this deficiency have been suggested in the
literature for the case p = 1. The idea of increasing the convergence rate by sub-
tracting a polynomial that represents the discontinuities in the function and some
of its first derivatives (“jumps") was suggested by Krylov [5] in 1906 and later, in
1964, by Lanczos [6]. The key problem lies in determining the singularity ampli-
tudes that has been realized by Eckhoff [7-9] where the values of the "“jumps" are
solutions of the corresponding system of linear equations. The Krylov-Lanczos and
the Krylov-Lanczos-Eckhoff methods were developed and generalized by a number
of authors, see [10-15] with references therein.

In this paper we consider trigonometric Hermite interpolation with equidistant
interpolation nodes and uniform multiplicities. Our method of construction of
the trigonometric Hermite interpolants may be considered as a continuation of
the method of Berrut and Welcher [4]. We derive relatively compact formula for
the trigonometric Hermite interpolation that gives the interpolants as functions of
the coefficients in the DFTs of the derivative values. We consider the case of an
odd number of equidistant points for an arbitrary high number of derivatives of
equal order at each of these nodes. Although we are discussing only the case of
odd number of points our approach is valid also for even number of nodes. The
accelerating convergence of interpolations were achieved by application of the
Krylov-Lanczos approach. We also give formulae for the corrections that should
be applied in order to soften the effect of the “jumps" at the endpoints when the
interpolated function is not periodic. In this paper it will be assumed that the exact
values of the "jumps" are known.

2. Let f € CP7Y—1,1], p > 1. Let f,(,{) denote the discrete Fourier coefficients
of the j-th derivative of f
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We set f, := ﬁ(,?).
Following [4], the sequence Tp,N(f), p > 1, N > 1, of Hermite trigonometric
interpolation polynomials will be defined by the formula
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where o = ( for odd values of parameter p and ¢ = 1 for even values. The unknown
functions {a;} will be determined from the condition that 7}, x(f) is exact for the set
of functions {e™*}, r = —N(1—0)— [2] 2N +1),--- ,N(14+0)+ [5}] (2N +1), where
[z] denotes the greatest integer less than or equal to z. We set r = n + s(2N + 1),
n=-N(1-o0),-- ,N1+0);s=—[2], -, [5}] and obtain the system of linear
equations

z7r(m—|—s (2N+1)) Z Oéj (1)

with Vandermonde matrix, for determining the functions {aj}, where
as(m) :=im(m + s(2N + 1)).

We proceed as in [11] and construct the explicit solution of (1)

[257]
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and the ~, are the coefficients of the polynomial
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This leads to the explicit form of the trigonometric Hermite interpolants
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Remark. Trigonometric Hermite interpolation 7), y(f)(x) realizes trigonomet-
ric Hermite interpolation for odd number of grid points. It is worth to mention

that overall idea of this section with further acceleration of convergence by the
Krylov-Lanczos method is valid also for even number of nodes.

Theorem 0.1 Let f € CP7'[-1,1], p > 1. Then T,n(f) is a trigonometric Hermite

interpolation of f on equidistant grid x; = |k| < N with uniform multiplicities

2N+1’
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Definition of the coefficients v, implies

kp—s
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Inserting this into (2) we get for k= —[2] .-+, [&2] and j =0,--- ,p—1

crg(m) = mﬁm (2 Nm+ 1) :

where

(6)

Integration of the interpolation 7}, y(f)(z) over the interval (—1, 1) leads to the

quadrature formula

1 p—1
Q)= [ Bt = S — Z O
H -
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240

3. For f € C9—1,1] denote by Aj(f) the “jump" of the k-th derivative of f

Throughout the paper it will be assumed that the exact values of the “jumps" are

known.
By f,gj ) define the Fourier coefficients of the j-th derivative of f

1 .
= 5/ f(J)(x)e_”""”dx, j>0.
—1

We set f, := fT(LO).
The following lemma is crucial for the Krylov-Lanczos method.
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Lemma 0.2 Suppose f € CU—1,1] for some q > 1. Then the following formula holds
forn #0

GV o V1) IS WY R P
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Equation (7) implies the basic expansion
q—1
f(x) = F(x) + ) A(f)Bi(x) (8)
k=0

of the approximated function where the Bj are 2-periodic extensions of the
Bernoulli polynomials with the Fourier coefficients

0,n =0,
( n+1

Bk,n =
2(zrrn k+1 ) 1 7£ 0

and F is a 2-periodic and smooth function (F € CY"'(R)) on the real line with the
discrete Fourier coefficients

Equation (8) yields (p < q)

AL <

k=j
Therefore
q—1
FO = fO =" A(f)Byjm n £ 0, j =1, .p—1, (11)
k=j
and
) Anl) &
FO(J) = f(g]) — j_21 - ZAk(f)Bk—j,07 ] = 17 Y L. (12)
k=j

Approximation of F in (8) by T, n(f), for ¢ > p, leads to the following Hermite
interpolation that we will call Hermite-Krylov-Lanczos interpolation
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Topn(f)(z) = vn(f) Z Ch.j (m)ew(m+k(2N+1))
m=—N(1-0) j=0 =-12]
qg—1
+ ZAk(f)Bk(l')a q20p, (13)
k=0

where the coefficients £ are defined by (9), (11), and (12).
Integration of the interpolation (13) over the interval (—1,1) leads to the fol-
lowing quadrature formula that we will call Hermite-Krylov-Lanczos quadrature

1 9 p—1
Qo) = [ Tyu(opte =2 - 2;?;11 ZF@ )02 p.(14)

= =
H ¢
t=—Ip/2]

1#£0

where for FU)(z) we have representation (10).
We put

Ryp(F)(@) = £(2) = Ty (F)(@), rymn(f) = / fa)dz = Qup ()

and by ||f|| we denote the standard norm in the space Ly(—1,1)

= ([ 1)

The next theorem reveals the asymptotic behavior of the trigonometric Her-
mite interpolation.

1/2

Theorem 0.3 Let f € C9—1,1], ¢ > 1 be such that f9 is absolutely continuous on
[—1,1]. Then the following estimate holds (¢ > p)

Jim (2N + 72| Rypn (5] = |44(F)lE(a, p).

Lo (2] 1\ 2
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and the By ; are defined by (5).
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In the next theorem we reveal the asymptotic behavior of the Hermite-Krylov-

Lanczos quadrature.

Theorem 0.4 Let f € CU—1,1], ¢ > 1 be such that f'9 is absolutely continuous on
[—1,1]. Then the following estimate holds (q > p)

fim (2N + 1) () = —22L Sy 3

N 2]

(im)ott T

0£0

7=0 S
(5]

where

and the ps(z) are defined by (6).
4. Consider the following simple function
f(z) =sin(z — 1). (15)

In Table the uniform errors chl‘éi)li |R,p.n(f)(z)| are presented for various values
of p, ¢ and N = 1 while interpolajting the function (15) by the Hermite-Krylov-
Lanczos interpolation. We see that the errors vary from the value 0.15 (p = ¢ = 1)
to the value 3-107% (¢ = 10 and p = 6). Hence, using the same number of nodes
(2N + 1 = 3) we increase the precision of the quadrature by increasing the values

of parameters p and gq.

The uniform errors while approximating the function (15) by the
Hermite-Krylov-Lanczos interpolation for various values of the parameters p and

q. Here, N = 1.
q\p 1 2 3 4 5 6
1 0.15 — — - - =
2 6.4-1073 2.4.1073 — — — —
3 24-107% 6.7-107* 2.6-107* — — —
4 1.8-107% 2.5-107% 4.9-107% 2.3-10°¢ — —
5 52-107 5.9-107% 9.9-107" 44-107 19-107° —
6 47-107% 29.-1077 24-107% 7.7-107° 24-107° 1.2-107°
7 1.2-107% 57-107® 3.8-107° 1.1-107® 3.3-107' 1.6-10710
8 1.2-1077 32-107° 1.1-107' 24.107" 4.7-107'%2 1.9.107'2
9 3.1-107% 5.8-1071 1.5-107' 2.9-10712 54-1071 2.1-107%3
10 [3.1-1072 3.6-1071 45-107*® 6.9-107* 85-107*% 2.7-1071°
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Fourier Formulae for Equidistant Hermite Trigonometric Interpolation

A sequence of Hermite trigonometric interpolation polynomials with equidistant in-
terpolation nodes and uniform multiplicities is investigated. We derive relatively compact
formula that gives the interpolants as functions of the coefficients in the DFTs of the
derivative values. The coefficients can be calculated by the FFT algorithm. Correspond-
ing quadrature formulae are derived and explored. Convergence acceleration based on
the Krylov-Lanczos approach for accelerating both the convergence of interpolation and
quadrature is considered. Exact constants of the asymptotic errors are obtained and some

numerical illustrations are presented.

W. Jd.. Mnnpnujui

Ntipdhyph Gpwalpnibwsuthwuia hwjwuwpwhtn hyplpynughwih hwdwp HSniphtip
puwiiwatio

Nuundtiwuppymy E Stpdpph - Gowblynibwsuhwuit - higptipynjughwt  hwyjwuwpuwhtin
guigh Ypw tu ytipghthu hwdwp bhpuyuwgymd b pwgwhwyp pwbwatn $mblyghwyh e tpw
wowbhgyuiph  $niphtih nhuyptiyp  dtnuhnjumpymibbtiph phpdhbobpnyg:  Mumdibwuhpymd E
htnptipunyughugh gniqudhypnpyut wpwgugiwi fuinhpp Unhiny-Lwbgnph hwygpih dnptig-
dwl Jhpundwdp:  Qmiquhbinwpwup numdbwuhpymd G hwdwyugpuujuwt punwijmubijhni-
pjub pwlwatnbppn: “Hhypupgymd G gmquipipmpyut hwpgtp, uwpugymd G ujuwpubph
wuhdupmpnptit dogppyp qwhupujubtbp: FJuyhlt wpnymbpubpp thpuywgtnd b dhpnnh
htiwpuynpmpymbbtpn:

A. B. ITorocssu

®opmyra Oypbe AAsT OPMUTOBON TPUTOHOMETPUIECKOM PaBHOOTCTOSIIE!N MHTEPIIOASITAN

M3yuyeHa DpMUTOBA TPUTOHOMETPHUYECKAs MHTEPIIOASINS Ha PAaBHOMEPHOM CeTH U
IpeACTaBAeHa siBHasg (POPMYAQ, KOTOpasi PEaAM3yeTcs MOCPEACTBOM AMCKPETHOTO IIpe-

obOpazoBaHuss Pyphe 3HaUeHUN (PYHKIUM U ee IIPOM3BOAHBIX. PaccMaTpuBaeTcst 3apada
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YCKOpeHusa CXOAMMOCTU HHTEPIIOAAIIVMKU IIpMMEHeHUHeM II0AXOAA KprAOBa—AaHHOLHa.
HapaMeABHO HCCAEAOBAHBI COOTBETCTBYIOIIME KBaAPATypPHBIE q)OpMYABI. HOAY‘IQHBI
ACHUMIITOTUYECKHN TOYHBIE OIIE€HKHN OIINOOK I/IHTepHOAﬂHI/IfI 1 KBaAApPaATyp. PeBYABTaTBI

YHNCAEHHBIX 3KCIIEPUMMEHTOB IMOATBEPXKAAIOT TOYHOCTE TEOPETUYECKHUX OIIE€HOK.
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