ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱНАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫՉԵԿՈՒՅՅՆԵՐREPORTS

Join 107

2007

Nº 3

ÕÈÌ È×ÅÑÊÀß ÔÈÇÈÊÀ

УДК 541.124

Ë. À. Ì àí ó÷àðî âà, Ñ. Â. Öàðóêÿí, àêàäaì èê È. À. Âàðäàí ÿí

Î ñî á
ái í î ñò
è ãaò
aðî ãai í î ãî âçà
èì î äaéñò
âèÿ ðà
äèêàëî â ÑÍ $_3$ Î $_2$ ñ ì àò
ài î ì à
çî òà í à ðà
çí ûõ ï î â
áðõí î ñò
ÿõ

(Представлено 27/XI 2006)

Êёþ÷àâûà ñёî âà: поверхность, радикал, метан, двуокись азота, константа скорости

Ââàäáíèà. Согласно исследованиям последних лет в процессы газофазного окисления органических соединений вносят свой вклад реакции взаимодействия их с радикалами RO₂ или HO₂ на поверхности реакционного сосуда с образованием пероксисоединений [1-3]. В работе [4], в которой исследовалась фотохимическая деградация углеводородов в присутствии аэрозолей (SiO₂,TiO₂), сделан вывод о том, что на поверхности TiO₂ углеводороды реагируют с адсорбированными радикалами OH и HO₂. В работах [5,6] указывается, что гетерогенные реакции радикалов на твердых поверхностях могут влиять на газовый состав тропосферы.

Ранее нами была установлена возможность гетерогенного взаимодействия радикалов CH₃O₂ с различными органическими и неорганическими соединениями на поверхности, покрытой KCl [7].

Исходя из того, что природа поверхности реакционного сосуда сильно влияет на направление и скорость реакций окисления органических соединений [8], в настоящей работе исследовано влияние природы соли на взаимодействие радикалов CH₃O₂ с CH₄, а также с NO₂. Опыты проводились на другой солевой поверхности - NaCl. Результаты сравнены с полученными на KCl.

Ì àòî äèêà ýêñï àðèì àí òî â. Методика экспериментов описана в [9]. Источником радикалов CH₃O₂ служила реакция гетерогенного радикального распада пероксиуксусной кислоты [10]. Поверхность капиллярного реактора покрывалась NaCl в результате обработки ее 10%-ным водным раствором NaCl [11]. Стабилизация поверхности реактора осуществлялась обработкой ее потоком радикалов. Размер и конструкция реактора (l = 20 мм, d = 1.5 мм), а также условия осуществления эксперимента ($\tau = 10^{-5} - 10^{-6}$ с) [9] исключали гомогенное протекание реакции. О взаимодействии радикалов с CH₄ и NO₂ судили по расходу радикалов CH₃O₂. Радикалы фиксировали, используя ЭПР-спектрометр в сочетании с методом вымораживания радикалов, описанным в [10,12]. Количество радикалов, намороженных в узле регистрации, составляло $\sim 10^{15}$ частиц. Количество поданного в реактор метана изменялось от 0 до 5.6×10^{17} молекул, а температура в реакционной зоне - в интервале 297-353 К.

Đа́со́ёйòàòû è èõ î áñóæäáí èà. Изучение зависимости скорости расхода радикалов от количества метана показало, что на поверхности, обработанной NaCl, как и в случае с KCl, заметное превращение пероксирадикалов в присутствии метана происходит уже при комнатной температуре. Экспериментальные данные представлены на рис. 1. Как видно, если при подаче метана в количестве 1.1×10^{17} молекул расходуется 15% радикалов CH₃O₂, то при увеличении подачи метана до 5.6×10^{17} молекул расход радикалов RO₂ достигает 73%. При сравнении данных, полученных на KCl и NaCl, оказалось, что при одинаковом содержании метана в смеси (5.6×10^{17} молекул) расход радикалов CH₃O₂ на KCl меньше и составляет всего 43%.

Рис. 1. Зависимость расхода радикалов $\rm CH_3O_2$ от количества поданных $\rm CH_4$ и $\rm NO_2$ при T=297 K.

Таким образом, результаты экспериментов показали, что на NaCl соответствующие реакции протекают с большей скоростью, чем на KCl. Воспроизводимость результатов на NaCl хуже, что указывает на большую активность гетерогенной реакции в случае NaCl. Поверхность NaCl оказалась

более чувствительной по сравнению с KCl и в отношении обработки ее продуктами взаимодействия радикалов RO₂ с метаном. Этот вывод был сделан после того, как было замечено, что в холостых опытах (без подачи CH₄), проводимых до и после подачи в систему метана, величины сигналов ЭПР радикала RO_2 сильно отличаются. Так, при подаче 1.2×10^{17} молекул CH₄ величина сигнала ЭПР радикала CH₃O₂ во втором холостом опыте выросла по сравнению с первым в 1.7 раза, а в случае подачи 5.6×10^{17} молекул CH₄ - в 3 раза. Учитывая, что опыты проводились в аналогичных условиях, было сделано предположение о том, что в присутствии метана или продуктов его взаимодействия поверхность реакционного сосуда модифицируется, вследствие чего скорость гибели радикалов существенно Степень модификации поверхности при прочих равных замедляется. условиях зависит от количества поданного метана. Это видно на рис. 2, где представлена зависимость отношения величин сигналов ЭПР радикала СН₃О₂ от количества поданного метана до $(l_{RO_2})_1$ и после $(l_{RO_2})_2$ реакции.

Оставалось неясным, является наблюдаемый эффект результатом воздействия на поверхность самого метана или продуктов его взаимодействия с радикалами CH_3O_2 . Ответ был получен в эксперименте, в котором перед проведением холостого опыта через реактор пропустили 0.8×10^{17} молекул CH_4 , т.е. реагенты в реактор подавали не одновременно, а по отдельности. Полученный сигнал ЭПР радикала CH_3O_2 точно совпал по величине с сигналом, полученным в холостом опыте, проведенном обычным способом. Это означало, что без реакции CH_4 с радикалами CH_3O_2 никакого влияния метана на поверхность не наблюдается, а ответственными за модификацию поверхности являются продукты взаимодействия CH_4 с радикалами CH_3O_2 .

Рис. 2. Зависимость отношения величин сигналов ЭПР радикалов CH_3O_2 до $(l_{RO_2})_1$ и после $(l_{RO_2})_2$ реакции от количества поданного CH_4 .

Представление об устойчивости эффекта модификации поверхности

дал опыт, в котором после реакции радикалов CH₃O₂ с CH₄ провели термическую вакуумную обработку реактора при 353 К в течение 1 ч, а затем в течение 0.5 ч в условиях вакуумирования охлаждали до комнатной температуры. В приведенных условиях эксперимента величины сигналов ЭПР радикалов CH₃O₂ до и после реакции оказались близки в пределах ошибок экспериментов. Из этого можно заключить, что после соответствующей обработки поверхность реакционного сосуда регенерируется до первоначального состояния, вследствие чего эффекта модификации поверхности не наблюдается.

Следующую серию опытов провели с целью определить, будет ли наблюдаться влияние продуктов реакции на поверхность, если реакционную зону нагреть до 353 К. Оказалось, что в холостых опытах до и после подачи в реакцию 1.12×10^{17} молекул CH₄ величины сигнала ЭПР радикала CH₃O₂ в пределах ошибки эксперимента близки с тенденцией к понижению во втором случае по сравнению с первым. Никакого роста сигнала, а тем более в 1.7-3 раза, как это было при комнатной температуре, не наблюдалось.

Реакция гетерогенного взаимодействия радикалов СН₃О₂ с неорганическим соединением изучена на примере NO₂. Эта реакция представляет интерес для понимания процессов, происходящих в атмосфере, особенно на поверхности естественных NaCl аэрозолей. Количество подаваемого в реакционную зону NO $_2$ меняли от 0 до 2.4×10^{17} молекул. Зависимость расхода радикалов CH₃O₂ от количества поданного NO₂ при комнатной температуре представлена на рис. 1. Как видно, с увеличением количества поданного в реакционную зону NO₂ расход радикалов CH₃O₂ увеличивается. Представленная кривая соответствует случаю, когда количество подаваемого диоксида азота в каждом следующем опыте последовательно увеличивалось (соответственно 0.64×10^{17} ; 1.3×10^{17} ; 2.4×10^{17} молекул). При повторении после этого первого опыта с 0.64×10^{17} молекул NO $_2$ оказалось, что величина сигнала ЭПР радикалов СН₃О₂ значительно меньше полученной вначале. Этот факт может быть следствием изменения состояния поверхности NaCl после нескольких подач NO₂, в результате чего скорость гибели радикалов CH₃O₂ возрастает вследствие модификации поверхности NaCl в процессе реакции.

С целью подтверждения этих предположений были проведены эксперименты, в которых в систему подавали 1.12×10^{17} и 0.5×10^{17} молекул NO₂, но до и после каждой реакции радикалов CH₃O₂ с NO₂ проводили холостые опыты. Оказалось, что в холостом опыте, следующем после реакции с NO₂, величина сигнала ЭПР радикалов CH₃O₂ значительно меньше, чем до реакции. Эти данные хорошо коррелируют с полученными в предыдущих экспериментах и свидетельствуют об изменении состояния поверхности NaCl в процессе реакции радикалов CH₃O₂ с NO₂. В условиях наших экспериментов величина сигнала ЭПР радикалов CH₃O₂ во втором холостом опыте по сравнению с первым уменьшалась от 4 до 6 раз. Очевидно, степень модификации поверхности зависит от количества поданного реагента, а значит, от количества образовавшихся в процессе продуктов реакции, модифицирующих поверхность NaCl.

Полученные экспериментальные данные позволили оценить эффективные константы скоростей гетерогенного взаимодействия радикалов CH₃O₂ с CH₄ и NO₂ на поверхностях KCl и NaCl. В расчётах исходили из того, что реакция протекает по механизму Ридила - Или. Из формулы

$$\frac{\Delta[RO_2]}{\Delta t} = k[RO_2][\text{pearent}]$$

следует, что

$$k = rac{\Delta[RO_2]}{\Delta t[RO_2][\text{peagrent}]}.$$

Значения $\frac{\Delta[RO_2]}{[RO_2]}$ были получены экспериментально и их средние величины представлены в таблице.

Реагенты	KCl		NaCl	
	$\frac{\Delta[RO_2]}{[RO_2]}$	k, см ³ /молекул с	$\frac{\Delta[RO_2]}{[RO_2]}$	k, см ³ /молекул с
$ m CH_4$, $2.4 imes10^{17}$ молекул	0.19	$2.1 imes 10^{-11}$	0.28	$3.1 imes 10^{-11}$
NO_2 , $2.4 imes 10^{17}$ молекул	0.41	4.5×10^{-11}	0.72	$7.9 imes 10^{-11}$

Давление смеси в реакционной зоне для капиллярного реактора рассчитывали по формуле, предполагая, что оно падает по экспоненциальному закону. Расчет времени пребывания смеси в реакторе проводили по формуле

$$\tau = \frac{P_{\mathrm{peakt}} V_{\mathrm{peakt}}}{Q} = 1.2 \times 10^{-5} \mathrm{c},$$

где Q - массовый поток, значение которого рассчитывали согласно [13], а Δt соответствует τ . Число частиц NO₂ и CH₄ в единице объема составляло 7.7×10^{14} . Отсюда в условиях наших экспериментов эффективные константы скоростей гетерогенного взаимодействия радикалов CH₃O₂ с NO₂ и CH₄ на поверхности KCl и NaCl оцениваются величинами, приведенными в таблице.

Сравнивая константы скорости взаимодействия радикалов CH₃O₂ с CH₄ и NO₂ на поверхностях KCl и NaCl, можно заключить, что на NaCl процесс идет с большей скоростью. В то же время на каждой из поверхностей скорость взаимодействия радикалов CH₃O₂ с диоксидом азота выше, чем с метаном, более чем в 2 раза. Одним из объяснений этого факта может быть наблюдаемая корреляция между разностью электроотрицательностей этих солей и скоростью реакций.

На основании полученных данных для поверхности NaCl была оценена вероятность захвата (ε) пероксидных радикалов CH₃O₂, по формуле, выражающей зависимость между $k_{\rm rer}$ и ε , откуда $\varepsilon = \frac{k_{\rm rer}d}{u}$, где u - скорость теплового движения, d - диаметр реактора.

Принимая во внимание, что в пределах ошибки эксперимента в капиллярном реакторе в отсутствие реагента не наблюдалось расхода радикалов и расход в пределах ошибки был принят равным 10^{-1} (10%), для $k_{\rm rer}$ получается значение, равное $8.5 \times 10^3 {\rm c}^{-1}$. С учетом того, что $u = 4 \times 10^4 {\rm cm/c}$, $d = 1.5 \times 10^{-1} {\rm cm}$, $\varepsilon = 3.2 \times 10^{-2}$. Это соответствует верхнему пределу скорости гетерогенной гибели радикалов.

Сàêëb÷aí èa. Обобщая полученные результаты, можно заключить, что взаимодействие радикалов CH₃O₂ с метаном и с NO₂ на поверхности, обработанной NaCl, является сложным процессом, в котором образующиеся продукты реакции, в свою очередь, влияют на поверхность, модифицируя ее таким образом, что скорость гибели радикалов СН₃О₂ резко изменяется, замедляясь в случае метана и возрастая в случае NO₂. Этот эффект проявляется сильнее при низких температурах, а с повышением температуры его вклад уменьшается. Эффект модификации поверхности обратим и может быть устранен либо термической обработкой поверхности при 353-373 К в течение не менее 1-1.5 часа, либо проведением последовательно нескольких холостых опытов. Поэтому в промышленности в процессе термического окисления метана, ведущегося обычно при значительно более высоких температурах, можно ожидать меньшего влияния продуктов реакции на скорость гетерогенной радикальной стадии.

Различия в протекании процесса с описанным нами ранее [7] ходом температурных зависимостей скоростей реакций радикалов CH₃O₂ с метаном и с NO₂ на поверхности KCl, где для метана отмечалась отрицательная температурная зависимость, а для NO₂ - положительная, можно объяснить активацией поверхности во время реакции радикалов CH₃O₂ с метаном и ее пассивацией во время реакции их с NO₂.

Наблюдаемые эффекты еще раз указывают на то, что в процесс взаимодействия CH₄ и NO₂ с радикалами RO₂ в газовой фазе в присутствии аэрозолей гетерогенная стадия может внести существенный вклад.

Институт химической физики НАН РА

Î nî á a í í î nò à a ò à dî a á í í î a î a çà è î î a à é nò â è y ð à a è é à ë î â $\tilde{N}I_3 \hat{I}_2$ n ì a ò à í î à à c î ò à í à d à c í û õ ï î â à d õ í î nò y õ

Исследовано взаимодействие радикалов CH_3O_2 с CH_4 и NO_2 на поверхности реактора, обработанной 10%-ным раствором NaCl. Результаты сравнены с полученными ранее на KCl. Показано, что на NaCl указанные реакции протекают с большей скоростью. Установлен эффект модификации поверхности NaCl в процессе обработки ее продуктами взаимодействия радикалов CH_3O_2 с реагентами, который выражается активацией поверхности в случае метана и ее пассивацией в случае диоксида азота. Оценены эффективные константы скоростей взаимодействия радикалов CH_3O_2 с CH_4 и NO_2 на поверхностях KCl и NaCl, а также вероятность захвата (ε) пероксирадикалов CH_3O_2 .

Լ. Ա. Մանուչարովա, Ս. Վ. Ծառուկյան, ակադեմիկոս Ի. Ա. Վարդանյան

Տարբեր մակերևույթների վրա մեթանի և ազոփի երկօքսիդի հետ CH₃O₂ ոադիկալների հետերոգեն փոխազդեցության առանձնահատկությունները

NaCl աղով պատած կապիլյար ռեակցիոն անոթում ուսումնասիրվել է CH_3O_2 ռադիկալների փոխազդեցությունը CH_4 և NO_2 հետ։ Ստացված տվյալները համեմատրվել են նախկինում KCl -ի դեպքում ստացված տվյալների հետ։ Յույց է տրվել, որ NaCl -ի դեպքում նշված ռեակցիաները ընթանում են ավելի մեծ արագությամբ։ Եզրակացություն է արվել, որ ռևակցիայի ընթացքում առաջացող արգասիքների ազդեցության հետևանքով տեղի է ունենում մակերևույթի վերափոխում, որն արտահայտվում է մակերևույթի ակտիվացմամբ՝ CH_4 -ի դեպքում ու նրա պասիվացմամբ՝ NO_2 -ի դեպքում։ Գնահատվել են KCl և NaCl մակերևույթների վրա CH_3O_2 ռաղիկալների հետ CH_4 -ի և NO_2 -ի փոխազդեցության արագությունների էֆեկտիվ հաստատունների մեծությունները, ինչպես նաև՝ CH_3O_2 ռաղիկալների գրավման

L. A. Manucharova, S. V. Tsarukyan, academician I. A. Vardanyan

Pecularities of Heterogeneous Interaction of $\tilde{N}I_{3}I_{2}$ Radicals with Methane and Nitrogen Dioxide on Different Surfaces

The interaction of radicals CH_3O_2 with CH_4 and NO_2 on the surface of a reactor treated by 10%-s' NaCl solution has been investigated. The results are compared with the earlier obtained ones on KCl surface. It was shown, that on NaCl surface the specified reaction proceeds with the greater rate. The effect of modification of NaCl surface during the process of its treatment by the products of interaction of radicals $_{R2}$ with reagents has been established. This effect is expressed by the activation of the surface in the case of methane and its passivation in the case of dioxide of nitrogen. Effective rate constants of reaction of radicals RO₂ with CH₄ and NO₂ on surfaces KCl and NaCl, have been estimated and the probability of capture (ε) of peroxyradicals CH₃O₂ have been estimated as well.

Ëèòàðàòóðà

1. Bakhchadjyan R.H., Vardanyan I.A. - Intern. J. Chem. Kinetics. 1994. V. 26. P. 595-603.

2. Keheyan E.H., Vardanyan I.A. - Chemical J. of Armenia. 1998. V. 51. P. 177-182.

3. *Луспарян А.П., Оганесян Э.А., Варданян И.А., Налбандян А.Б.* - Арм. хим. журн. 1985. Т. 38. N 5. C. 333-335.

4. Benke W., Hollander W., Koch W., Nolting F., Zetzsch C. - Atmospheric Environment. 1988. V. 22. P.1113-1120.

5. *Dlugokencky E.J., Ravishankara A.R.* - J. Geophys. Research Lett. 1992. V. 19. P. 41-44.

6. Ravishankara A.R. - Science. 1997. V. 276. P. 1058-1065.

Manucharova L.A., Tsarukyan S.V., Vardanyan I.A. - Intern. J. Chem. Kinetics.
 2004. V. 36. N11. P. 591-595.

8. *Налбандян А.Б., Варданян И.А.* - Современное состояние газофазного окисления органических соединений. Ереван. Изд-во АН Арм. ССР. 1986. 227 с.

9. *Манучарова Л.А., Царукян С.В., Варданян И.А.* - ДАН Армении. 2003.Т.103. N 2. C. 121-125.

10. Дорунц А.Г., Арустамян А.М., Баберцян Л.П., Оганесян Э.А., Варданян И.А., Налбандян А.Б. - ДАН СССР. 1987. Т. 292. С. 659-663.

11. *Штерн В.Л.* - Механизм окисления углеводородов в газовой фазе. М. Издво АН СССР, 1960. 64 с.

12. *Налбандян А.Б., Манташян А.А.* - Элементарные процессы в медленных газофазных реакциях. Ереван. Изд-во АН Арм.ССР. 1975. 229 с.

13. Основы вакуумной техники. М. Энергия. 1975. 416 с.