
271 7

MATHEMATICS

ÓÄÊ 517.984

L. Z. Gevorgyan

On Some Ill Conditioned Operator Equations

(Submitted by academician A. B. Nersessian 5/IX 2006)

Keywords: iterations, convergence rate, numerical range

1. Let H; h²; ²i be a Hilbert space and A - a (bounded, linear) operator, acting
in H. One of the most familiar ways of solving the equation

Ax = b ( 1 :1 )

is the (Richardson’s) iterative method

xn+1 = xn ¡ ®n ( Axn ¡ b) ; n 2 Z+; ( 1 :2 )

where x0 is an initial guess and ®n is a numerical parameter. Denote by bn the
difference Axn ¡ b said to be the discrepancy or the residual. Then

bn+1 = ( I ¡ ®nA) bn =
nY

k=0

( I ¡ ®kA) b0: ( 1 :3 )

For the simplest case ®n = ® = const (so called Richardson’s stationary iterative
process) and

bn = ( I ¡ ®A) nb0:
If there exists a complex number ® such that jjI ¡®Ajj < 1 , then the sequence fbng
tends to zero at least as a geometric progression and fxng converges to the solution
of (1.1).
Denote by

m( A) = m
def
= in f

t2C
jjI ¡ tAjj

and
p( A) = p

def
= in f

Ax6=µ
jhAx; xij

jjAxjj ¢ jjxjj :
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The following results are from [1].
a) m2 + p2 = 1 , so m( A) < 1 if and only if p( A) > 0 .
b) Let s = s( A) be the complex number such that jjI ¡ s( A) Ajj = m( A) . If fzng

is a sequence of elements satisfying

lim
n!1

jhAzn; znij
jjAznjj ¢ jjznjj

= p;

then
lim
n!1

hzn; Azni
jjAznjj2

= s: ( 1 :4 )

c) If m( A) < 1 , then the operator A is invertible

m( A) = m ( A¡1 ) and s( A) ¢ s( A¡1 ) = p2

d) k · 1+m
1¡m , where k = k ( A)

def
= jjAjj ¢ jjA¡1jj is the condition number of the

operator A.
The set

W ( A) =

(
hAx; xi
jjxjj2 : x 6= µ

)

is the numerical range of the operator A and

Wn ( A) =

(
hAx; xi

jjAxjj ¢ jjxjj : Ax 6= µ
)

is said (cf. [2]) to be the normalized numerical range of A. In [1] it is proved that
the origin O belongs to the closure W ( A ) of the numerical range if and only if it
belongs to Wn ( A) . So the condition O 62 W ( A) is sufficient in order the iterations
(1.2) converge to the solution a.

Formula (1.4) may be useful in theoretical speculations. In practice the pa-
rameter ® is chosen to minimize the residual at each step, i.e.

®n =
hbn; Abni
jjAbnjj2

: ( 1 :5 )

As
jjbn+1jj = jjbn ¡ ®nAbnjj · jjbn ¡ s( A) ¢ Abnjj · m( A) ¢ jjbnjj;

then if m( A) < 1 , the iterative process (1.2), (1.5) converges and

jjxn ¡ ajj · jjA¡1jj ¢ jjbnjj · jjA¡1jj ¢mn ( A ) ¢ jjAx0 ¡ bjj ·
k ( A)

jjAjj ¢mn ( A ) ¢ jjAx0 ¡ bjj;

therefore
jjxn ¡ ajj · 1 +m( A)

1 ¡m( A) ¢ jjAx0 ¡ bjj
r ( A)

¢mn ( A) ; ( 1 :6 )

1 1 2



where r ( A) is the spectral radius of A.
Let S be an invertible operator, B = S¡1AS, c = S¡1b. The solution to

By = c

(if O 62W ( B ) ) may be sought as

yn+1 = yn ¡ ±n ( Byn ¡ c) ;

Multiplying the above relation from the left by S and denoting Syn = xn we get

xn+1 = xn ¡ ±n ( Axn ¡ b) : ( 1 :7 )

If the sequence fyng converges, the sequence fxng converges also.
It is known [3], Theorem 3, that if A is not a scalar multiple of the identity and

K is a compact subset of the complex plane C then there is an invertible operator
S such that intW ( S¡1AS ) ¾ K (int here means the set of interior points). As the
passage to a similar operator in fact means an equivalent renorming of the space,
Theorem 3 means that the condition O 62 W ( A) (equivalent to m( A) < 1 ) may be
fulfilled by a pure chance.

In positive direction goes Theorem 2 from [3], stating that for any open convex
set U containing the spectrum SpA of A there exists an invertible operator S with
W ( S¡1AS ) ½ U . This theorem implies that the intersection of closures of numerical
ranges of all operators, similar to A coincides with the convex hull chSpA of the
spectrum of A, a result, proved by Hildebrandt in [4].

Localization of the spectrum of an operator, as compared with the normalized
numerical range is easier to establish. For example, in finite dimensional space
different Gershgorin type results may be used. In the general case the Bendixon-
Hirsch theorem gives some pertinent information.

As we have seen above, if O 62W ( A) nchSpA then iterations (1.7) may converge
for an appropriate choice of ±n. In next section we will consider this problem in
more detailed way. In the last part a necessary and sufficient condition is found in
order the condition number of the operator be equal to its upper bound.

2. As any compact convex subset F of C is the intersection of all closed
circles, containing F , then condition O 62 F implies that there exists at least one
circle, containing F and separating it from the origin. It is easy to see that for any
such circle the distance jOCj from the origin to the centre of the circle is greater
than its radius r, i.e.

r

jOCj < 1 .
Lemma 1. Let F be a compact convex subset of C and O 62 F . Then there

exists the unique closed circle D = D ( C;R ) , such that

F ½ D and O 62 D; ( 2 :1 )
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having the least ratio
R

jOCj among all circles, satisfying condition (2.1).

Further the circle described in the above Lemma will be said optimal.
Lemma 2. The boundary of the optimal circle contains at least two points, belong-
ing to F .
Corollary. For any circle F the optimal circle coincides with F .
Example 1. Let F be a segment [¸1; ¸2] in the complex plane C, which does not
contain the origin O. Then the centre C of the optimal circle is at the point

j¸1j+ j¸2j
sgn¸1 + sgn¸2

e xp ( i( a r g ¸1 + a r g ¸2 ) ) and the ratio R=jOCj is equal to
j¸1 ¡ ¸2j
j¸1j+ j¸2j

.

Example 2. Let

A =

0
BBBB@

1 0 0 0

0 1 :5 + i 0 0

0 0 1 :5 + i 0

0 0 0 2

1
CCCCA
:

The optimal circle, containing SpA is centered at the point C (
1 3

6
; 0 ) and has

the radius R =

p
1 3

3
, so m( A) =

2p
1 3
= 0 :5 5 4 7 ¢ ¢ ¢. For this operator k ( A ) = 2 and

1 +m

1 ¡m = 3 :4 9 1 4 ¢ ¢ ¢.

As we have seen above, if O 62 chSpA, then for ® = 1

z0
, where z0 is the affix of

the optimal circle centre, the spectrum of the operator B = I ¡ ®A lies in a circle,

centered at the origin and of radius, equal to
R

jz0j
, which is strictly less than 1.

Proposition. Let B be an operator, acting in a Hilbert space H; h²; ²i and " - a
positive number. Then there exists a scalar product [²; ²], generating a new norm
j ² j equivalent to the former one and jBj · r ( B ) + ".

Remark. This Proposition is a slight modification of § 1, 1.4 from [5].
Summarizing, we propose the following way of solving equation (1.1) in the

case when iterative process (1.2), (1.5) fails to converge or converges slowly.
1. Localize the spectrum of A,
2. find the optimal circle D ( z0; R ) ,
3. choose a positive number and introduce an equivalent norm such that

¯̄
¯̄
¯

¯̄
¯̄
¯I ¡ 1

z0
A

¯̄
¯̄
¯

¯̄
¯̄
¯
new

· R

jz0j
+ " < 1 ;

4. do iterations until the desired precision is achieved.
As it has been noted above, the above program may be realized, if O 62 chSpA.

This limitation is due to the fact that we consider only the first order polynomials
P1 ( z ) = 1 ¡ ®z to minimize the residual. Denote by ¾ ( A) the full spectrum of A,
i.e. the union of SpA and all bounded connectivity components of C n SpA. As it
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is well known (cf. [6], Ch. III, Lemma 1.3) the set ¾ ( A) is polynomially convex, i.e.
for any point z 2 C n ¾ ( A ) there exists a polynomial P , such that

jP ( z ) j > s u p
»2¾(A)

jP ( » ) j:

If O 62 ¾ ( A) , then there exists a polynomial Q such that Q( 0 ) = 1 and

s u p
»2SpA

jQ( » ) j = s u p
»2¾(A)

jQ( » ) j < 1 :

By appropriate choice of the polynomial the last supremum may be set arbitrary

small. Consider the function h( z ) =
1

z
. Evidently, h is analytic everywhere, exclud-

ing the origin, so it may be approximated with any precision on ¾ ( A) by polynomi-
als, i.e. s u p

z2¾(A)
jP ( z ) ¡ h( z ) j · ". Then s u p

z2¾(A)
jzP ( z ) ¡ 1 j · " ¢ s u p

z2¾(A)
jzj = " ¢ r ( A) , so for

any positive ± there exists a polynomial Q( z ) = 1 ¡ zP ( z ) , such that Q( 0 ) = 1 and
s u p
z2¾(A)

jQ( z ) j · ±.
Despite the less restrictive condition imposed on SpA, the use of higher order poly-
nomials (and instead of optimal circles the search of Cassini’s ovals) is hindered by
the lack of relevant theory. Nevertheless, the truncated Faber series gives almost
the best result (cf. [7], 18.2).

Example 3. Let A be the operator, defined by the matrix

A =

Ã
1 2

0 1

!
:

Standard calculations show that

jjtA¡ Ijj = jtj+
q

j1 ¡ tj2 + jtj2:

As
jtj+
q

j1 ¡ tj2 + jtj2 ¸ jtj+ j 1 ¡ tj ¸ 1

then m ( A) = 1 . For the equation

Ax =

Ã
1

¡ 1

!

ordinary iterative method for an initial guess x0 =
Ã
3

4

!
shows completely chaotic

character.

As SpA = f1 g, then B = A¡ I =
Ã
0 2

0 0

!
. We have B2 = 0 and

[f; g] = hf; gi+ "¡2hBf;Bgi = hf; gi+ 4 "¡2f2g2:

The modified algorithm gives (in the finite-precision arithmetic) the exact solution
in a few (5-6, depending on ") steps.
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3. In [8] it is shown that for any two Hilbert space operators A and B the
equality jjA+Bjj = jjAjj+ jjBjj holds if and only if jjAjj ¢ jjBjj 2W ( B¤A) . So

js( A) j ¢ jjAjj = jjs( A) A¡ I + Ijj = jjs( A) A¡ Ijj+ 1 = m( A) + 1

and

js( A¡1 ) j ¢ jjA¡1jj = jjs( A¡1 ) A¡1 ¡ I + Ijj = jjs( A¡1 ) A¡1 ¡ Ijj+ 1 = m ( A) + 1 ;

implying

k ( A) =
1 +m( A)

1 ¡m( A)
if and only if m( A) 2W ( s( A) A¡ I ) and m( A) 2W ( s( A¡1 ) A¡1 ¡ I ) .

If m( A) 2W ( s( A) A¡I ) and m( A) 2W ( s( A¡1 ) A¡1¡I ) (these conditions follow
from above inclusions in any finite dimensional space, as the numerical range in
this case is closed) one gets a more transparent picture.

In [5] (Corollary 2.1) the following assertion is proved.
Let ¸ 2 W ( A) and j¸j = jjAjj. Then there exists an element x such that

Ax = ¸x, A¤x = ¸x. Recall that in this case ¸ is said to be a reducing (or normal)
eigenvalue of the operator A.
As jjs( A) A ¡ Ijj = m ( A) and jjs( A¡1 ) A¡1 ¡ Ijj = m ( A) , then s( A) Ax = ( 1 +m ( A) ) x
and s( A¡1 ) A¡1y = ( 1 +m ( A) ) y, meaning that

1 +m( A )

s( A)
and

s( A¡1 )

1 +m ( A )
=
1 ¡m( A)
s( A)

are reducing eigenvalues of A. Therefore

0
BB@

1 +m( A)

s( A)
0

0
1 ¡m ( A)
s( A)

1
CCA©B

Note that
1 +m( A)

s( A)
= jjAjj and 1 ¡m ( A)

s( A)
= jjA¡1jj¡1.

The general form of such operator is

A = ei®
µÃ ¸1 0

0 ¸2

!
©B
¶
;

where ® 2 R, ¸1 > ¸2 > 0 and
¯̄
¯̄
¯̄
¯̄ 2

¸1 + ¸2
B ¡ I

¯̄
¯̄
¯̄
¯̄ · ¸1 ¡ ¸2

¸1 + ¸2
.

Example 3. Let 0
BBBB@

1 0 0 0

0 1 :5 + 0 :5 i 0 0

0 0 1 :5 ¡ 0 :5 i 0

0 0 0 2

1
CCCCA
:

Then m( A) =
1

3
, s( A) =

2

3
, s( A¡1 ) =

4

3
, k ( A) = 2 .
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È. ¼. ¶¨áñ·Û³Ý

ì³ï å³ÛÙ³Ý³íáñí³Í ûå»ñ³ïáñ³ÛÇÝ Ñ³í³ë³ñáõÙÝ»ñÇ Ù³ëÇÝ

àñáß ¹»åù»ñáõÙ, »ñµ ûå»ñ³ïáñ³ÛÇÝ Ñ³í³ë³ñÙ³Ý ÉáõÍÙ³Ý ëáíáñ³Ï³Ý Çï»ñ³óÇáÝ

»Õ³Ý³ÏÁ ¹³Ý¹³Õ ¿ ½áõ·³ÙÇïáõÙ Ï³Ù ãÇ ½áõ·³ÙÇïáõÙ, ³é³ç³ñÏíáõÙ ¿ ï³ñ³ÍáõÃÛ³Ý

Ñ³Ù³ñÅ»ù í»ñ³ÝáñÙ³íáñáõÙ, ÇÝãÁ Ñ³Ý·»óÝáõÙ ¿ í»ñ³ÑëÏ»ÉÇ ³ñ³·áõÃÛ³Ùµ ½áõ·³ÙÇïáõÃÛ³Ý:

¶ïÝí³Í ¿ Ý³¨ ³ÝÑñ³Å»ßï ¨ µ³í³ñ³ñ å³ÛÙ³Ý, áñå»ë½Ç ûå»ñ³ïáñÇ å³ÛÙ³Ý³íáñí³-

ÍáõÃÛ³Ý ÃÇíÁ ¨ Ýí³½³·áõÛÝ ÝáñÙÁ Ï³åáÕ ³ÝÑ³í³ë³ñáõÃÛáõÝáõÙ ï»ÕÇ áõÝ»Ý³ Ñ³í³ë³ñáõÃ-

ÛáõÝ:

Ë. Ç. Ãåâîðãÿí

Î íåêîòîðûõ ïëîõî îáóñëîâëåííûõ îïåðàòîðíûõ óðàâíåíèÿõ

B íåêîòîðûõ ñëó÷àÿx, êîãäà îáû÷íûé èòåðàöèîííûé ïðîöåññ ðåøåíèÿ îïåðà-

òîðíûõ óðàâíåíèé ìåäëåííî ñõîäèòñÿ èëè ðàñõîäèòñÿ, ïðåäëàãàåòñÿ ýêâèâàëåíòíàÿ

ïåðåíîðìèðîâêà ïðîñòðàíñòâà, âåäóùàÿ ê ñõîäèìîñòè ñ êîíòðîëèðóåìîé ñêîðîñòüþ.

Íàéäåíî òàêæå íåîáõîäèìîå è äîñòàòî÷íîå óñëîâèå, ïðè êîòîðîì â íåðàâåíñòâå

ìåæäó ÷èñëîì îáóñëîâëåííîñòè è ìèíèìàëüíîé íîìîé äîñòèãàåòñÿ ðàâåíñòâî.
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