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1. Let H, (e, ®) be a Hilbert space and A - a (bounded, linear) operator, acting
in H. One of the most familiar ways of solving the equation

Az =0 (1.1)
is the (Richardson's) iterative method
Tpy1 = Tp — ap(Az, — ), neZt, (1.2)

where z, is an initial guess and «,, is a numerical parameter. Denote by b, the
difference Az, — b said to be the discrepancy or the residual. Then

b1 = (I — a,A)b, = H(I — apA)by. (1.3)
k=0
For the simplest case «a,, = o = const (so called Richardson's stationary iterative
process) and
by, = (I — aA)"by.

If there exists a complex number « such that ||/ — aA|| < 1, then the sequence {b,}
tends to zero at least as a geometric progression and {z, } converges to the solution
of (1.1).
Denote by

m(A) = m™ inf ||T — tA]

teC

and
def . o |(Az,2)]

p(A)=p= -
Az0 || Az|| - |||
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The following results are from [1].

a) m? + p* =1, so m(A) < 1 if and only if p(A4) > 0.

b) Let s = s(A) be the complex number such that ||I — s(A)A|| = m(A). If {z,}
is a sequence of elements satisfying

. |<Azn>zn>|
lim — =
noo ([ Azl Nzall  ©
then
(zn, Azp)

c) If m(A) < 1, then the operator A is invertible
m(A) =m(A™') and s(A)-s(A7!) = p?

d) k < 2, where k = k(A) “/11A]| - ||A7Y|| is the condition number of the

operator A.

The set (A 2)
Wi = { S s 0]

is the numerical range of the operator A and

B (Az, ) A
W"(A)‘{HAxH-HxH 4 7&9}

is said (cf. [2]) to be the normalized numerical range of A. In [1] it is proved that
the origin O belongs to the closure W(A) of the numerical range if and only if it
belongs to W,(A). So the condition O ¢ W (A) is sufficient in order the iterations
(1.2) converge to the solution a.
Formula (1.4) may be useful in theoretical speculations. In practice the pa-
rameter « is chosen to minimize the residual at each step, i.e.
(b, Aby,)
Oy = ——. (1.5)
|| Abn|[?
As
onga|| = [bn = anAbnl| < [[bn = s(A) - Aby|| < m(A) - |]ba]],

then if m(A) < 1, the iterative process (1.2), (1.5) converges and

k(A)

e —all < 1471 1]l < A~ () - Lo — Bl < -

m"(A) - | Az — b,

therefore
1+m(A) |[[Azo —b[|

@) (16)

[|zn = al| <
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where r(A) is the spectral radius of A.
Let S be an invertible operator, B = S7'AS, ¢ = S~1b. The solution to

By =c
(if O ¢ W(B)) may be sought as
Ynt1 = Yn — 0n(BYn — ¢),
Multiplying the above relation from the left by S and denoting Sy,, = x,, we get
Tpg1 = Tp — Op(Az, — b). (1.7)

If the sequence {y,} converges, the sequence {z,} converges also.

It is known [3], Theorem 3, that if A is not a scalar multiple of the identity and
K is a compact subset of the complex plane C then there is an invertible operator
S such that intW(S™1AS) D K (int here means the set of interior points). As the
passage to a similar operator in fact means an equivalent renorming of the space,
Theorem 3 means that the condition O ¢ W(A) (equivalent to m(A) < 1) may be
fulfilled by a pure chance.

In positive direction goes Theorem 2 from [3], stating that for any open convex
set U containing the spectrum SpA of A there exists an invertible operator S with
W(S~LAS) c U. This theorem implies that the intersection of closures of numerical
ranges of all operators, similar to A coincides with the convex hull chSpA of the
spectrum of A, a result, proved by Hildebrandt in [4].

Localization of the spectrum of an operator, as compared with the normalized
numerical range is easier to establish. For example, in finite dimensional space
different Gershgorin type results may be used. In the general case the Bendixon-
Hirsch theorem gives some pertinent information.

As we have seen above, if O ¢ W(A)\chSpA then iterations (1.7) may converge
for an appropriate choice of §,. In next section we will consider this problem in
more detailed way. In the last part a necessary and sufficient condition is found in
order the condition number of the operator be equal to its upper bound.

2. As any compact convex subset F' of C is the intersection of all closed
circles, containing F', then condition O ¢ F implies that there exists at least one
circle, containing /' and separating it from the origin. It is easy to see that for any
such circle the distancgr |OC| from the origin to the centre of the circle is greater
than its radius r, i.e. m < 1.

Lemma 1. Let F' be a compact convex subset of C and O ¢ F. Then there
exists the unique closed circle D = D(C, R), such that

FcD and O¥¢D, (2.1)
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having the least ratio

oC] among all circles, satisfying condition (2.1).
Further the circle described in the above Lemma will be said optimal.

Lemma 2. 7he boundary of the optimal circle contains at least two points, belong-
Ing to F.

Corollary. For any circle F' the optimal circle coincides with F.

Example 1. Let F' be a segment [\, \o] in the complex plane C, which does not

contain the origin O. Then the centre C of the optimal circle is at the point
[Aa] + [Asf AL — Ao

sgnA\; + sgn\; Al 4 [Ao]”

exp(i(arg Ay + arg \o)) and the ratio R/|OC)| is equal to

Example 2. Let

1 0 0 0
A 0 1541 0 | 0
0 0 1L5+¢ 0
0 0 0 2

. . . : : 13
The optimal circle, containing SpA is centered at the point C(€5 0) and has

V13 2
the radius R = ——, so m(A) = —— = 0.5547---. For this operator k(A) = 2 and
) 3 V13
ST 34014,
1—m

1
As we have seen above, if O & chSpA, then for « = —, where z; is the affix of
<0
the optimal circle centre, the spectrum of the operator B = [ — oA lies in a circle,

R
centered at the origin and of radius, equal to m, which is strictly less than 1.
20
Proposition. Let B be an operator, acting in a Hilbert space H, (e, o) andc - a

positive number. Then there exists a scalar product |e,e|, generating a new norm
| o | equivalent to the former one and |B| < r(B) +¢.

Remark. This Proposition is a slight modification of § 1, 1.4 from [9].

Summarizing, we propose the following way of solving equation (1.1) in the
case when iterative process (1.2), (1.9) fails to converge or converges slowly.

1. Localize the spectrum of A,

2. find the optimal circle D(zg, R),

3. choose a positive number and introduce an equivalent norm such that

R
< —+e<1,

Hf_lA

20

4. do iterations until the desired precision is achieved.

As it has been noted above, the above program may be realized, if O ¢ chSpA.
This limitation is due to the fact that we consider only the first order polynomials
Pi(z) = 1 — az to minimize the residual. Denote by o(A) the full spectrum of A,
i.e. the union of SpA and all bounded connectivity components of C \ SpA. As it
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is well known (cf. [6], Ch. III, Lemma 1.3) the set ¢(A) is polynomially convex, i.e.
for any point z € C\ 0(A) there exists a polynomial P, such that

|P(2)] > sup |P(§)].
£€o(A)

If O € 0(A), then there exists a polynomial ) such that (0) =1 and

sup |Q(£)| = Sup)lQ(i)\ <1

£eSpA feo(A
By appropriate choice of the polynomial the last supremum may be set arbitrary

1
small. Consider the function h(z) = —. Evidently, & is analytic everywhere, exclud-
z
ing the origin, so it may be approximated with any precision on ¢(A) by polynomi-
als, i.e. sup |P(z) —h(z)| <e. Then sup |zP(z)—1] <e- sup |z| =¢-r(A), so for

z€o(A) z€o(A) z€o(A
any positive 0 there exists a polynomial )(z) = 1 — zP(z), such that Q(0) = 1 and
sup |Q(z)] < 9.

z€o(A)
Despite the less restrictive condition imposed on SpA, the use of higher order poly-

nomials (and instead of optimal circles the search of Cassini's ovals) is hindered by
the lack of relevant theory. Nevertheless, the truncated Faber series gives almost
the best result (cf. [7], 18.2).

Example 3. Let A be the operator, defined by the matrix

()

Standard calculations show that

A = || = [¢] + /1T = 2> + J¢]*.
]+ J[L =t [ > e+ 1=t > 1

then m(A) = 1. For the equation
1
Ax = < )
-1

3
ordinary iterative method for an initial guess zy = <4> shows completely chaotic

As

character. 0 9
As SpA = {1}, thenB:A—I:<0 O).WehaveBQ:Oand
[f.q] = (f.g) + e *(Bf, Bg) = (f, g) + 47> f2G,.

The modified algorithm gives (in the finite-precision arithmetic) the exact solution
in a few (5-6, depending on ¢) steps.
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3. In [8] it is shown that for any two Hilbert space operators A and B the
equality ||A + B|| = ||A|| + || B|| holds if and only if ||A|| - || B|| € W(B*A). So

[s(A)[-[[All = [ls(A)A = T+ 1]| = ||s(A)A = I[| + 1 = m(A) + 1

and
(AT AT = lls(A DA = T+ 1]] = [|s(A") A = ][ + 1 =m(A) + 1,
implying , A
k(A) = i—m

if and only if m(A) € W(s(A)A —I) and m(A) € W(s(A"H) A~ —1TI).

If m(A) € W(s(A)A—1I) and m(A) € W(s(A~1)A~t —1T) (these conditions follow
from above inclusions in any finite dimensional space, as the numerical range in
this case is closed) one gets a more transparent picture.

In [5] (Corollary 2.1) the following assertion is proved.

Let A\ € W(A) and |\ = ||A||. Then there exists an element x such that
Ax = Az, A*z = Az. Recall that in this case ) is said to be a reducing (or normal)
eigenvalue of the operator A.
As ||s(A)A — I|| = m(A) and ||s(A"H) A~ — I]| = m(A), then s(A)Ax = (1 +m(A))z
1+m(A) d s(A7)  1-m

S | ( (
and s(A7) Ay = (1 +m(A))y, meaning that —=75— and == = ——75

are reducing eigenvalues of A. Therefore

1+m(A) 0
s(A
(0) 1—m(A) | ©P
1 +m(A) 1 ?1(411)1)
+m —-m C1i—1
Note that ) = ||A]| and ) =[|A7|.

The general form of such operator is

4 A O
A )
‘ (0 >\2>®

where o € R, Ay > Ay > 0 and ’ Al—?—AgB_IH = ii—_l—i\z
Example 3. Let
1 0 0 0
0 1.540.5¢ 0 0
0 0 1.5—-05 0
0 0 0 2

Then m(A) =
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L. 2. Glnpqyua
Juwm wwjiwiuwynpywd owtpumnpuwihG hwywuwnpmibbph dwuhG

Npn) nhwptipmy, Gpp owtpwwunpwjhG hwjwuwpiwl nodwl unynpuwlywl hnbtpughni
tnuwlwyp nulnun t gniquihnnd jwd sh gniquihnnid, wnwownpynd £ mwpwonipjwul
hwdwndtip ytpwlnpdwynpmud, hGsp hwlqliglnud L ytpwhuljtijh wpwgnipjuip gniquihnnipjwi:
Guljwo t Gwlk wlhpwdi)n L pwjwpunp wwjiwl, npytugh owytipwwmnph wwjdwlwynpju-
onipjwl phyn L GyuqugniyG Gnpip juwnn wihwyjwuwpnipmnilnd mtnh mGeGw hwjwuwnpnip-
Jmd:

A. 3. T'eBoprau
O HEKOTOPHIX NIAOXO OOYCAOBAEHHEIX OII€ePAaTOPHLIX YPaBHEHUAX

B HEKOTOPBIX CAydYadx, KOTAQ OOBIYHBINM WTEPAllMOHHBINM IIPOIIECC PelIeHUsd onepa-
TOPHBIX YPAaBHEHUNU MEAAEHHO CXOAUTCS UAM PACXOAUTCH, ITPEAAAraeTcsd SKBUBAACHTHASA
IIEpeHOPMHUPOBKA IPOCTPAHCTBA, BEAYIAA K CXOAUMOCTH C KOHTPOAUPYEMON CKOPOCTBIO.
HalipeHO Takyke HeOOXOAMMOE U AOCTAaTOYHOE YCAOBHE, IIPH KOTOPOM B HepaBeHCTBe

MeXAYy 9MCAOM O6YCAOBAQHHOCTI/I " MUHHUMAAbHOM HOMOM AOCTHUTdaeTCd PAaBEHCTBO.
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